The population of Korea's solar salt-producing regions is rapidly aging, resulting in a decrease in the number of productive workers. In solar salt production, salt collection is the most labor-intensive operation because existing salt collection vehicles require human operators. Therefore, we intend to develop an unmanned solar salt collection vehicle to reduce manpower requirements. The unmanned solar salt collection vehicle is designed to identify the salt collection status and location in the salt plate via color detection, the color detection performance is a crucial consideration. Therefore, an image processing algorithm was developed to improve color detection performance. The algorithm generates an around-view image by using resizing, rotation, and perspective transformation of the input image, set the RoI to transform only the corresponding area to the HSV color model, and detects the color area through an AND operation. The detected color area was expanded and noise removed using morphological operations, and the area of the detection region was calculated using contour and image moment. The calculated area is compared with the set area to determine the location case of the collection vehicle within the salt plate. The performance was evaluated by comparing the calculated area of the final detected color to which the algorithm was applied and the area of the detected color in each step of the algorithm. It was confirmed that the color detection performance is improved by at least 25-99% for salt detection, at least 44-68% for red color, and an average of 7% for blue and an average of 15% for green. The proposed approach is well-suited to the operation of unmanned solar salt collection vehicles.
한국 천일염 생산 지역의 인구는 빠르게 고령화되고 있어 생산 노동자가 줄고 있는 추세이다. 소금 포집 작업은 천일염 생산과정에서 가장 많은 노동력을 필요로 한다. 기존의 포집 장치는 사람의 작동 및 운전이 필요하여 상당한 노동력이 필요해서, 천일염 무인포집장치를 개발하여 생산 노동자의 노동력을 감소시키고자 한다. 천일염 포집장치는 색상 검출을 통해 소금의 포집 상황과 염전에서의 위치를 파악하도록 설계되었기 때문에, 포집장치의 색상 검출 성능이 중요한 요소이다. 그래서 색상 검출 성능 향상을 위해 이미지 처리를 이용한 알고리즘을 연구하였다. 알고리즘은 입력 이미지를 크기 재조정, 회전 및 투시 변환을 이용하여 around-view 이미지를 생성하고, RoI를 설정하여 해당 영역만 HSV 색상 모델로 변환하고 논리곱 연산을 통해 색상 영역을 검출한다. 검출 된 색상영역은 형태학적 연산을 이용하여 검출 영역을 확장하고 노이즈를 제거하여 컨투어와 이미지 모멘트를 이용하여 검출영역의 면적을 계산하고 설정된 면적과 비교하여 염판에서 포집장치의 위치 경우를 결정한다. 성능 평가는 알고리즘을 적용한 최종 검출 색상의 계산 면적과 알고리즘의 각 단계의 검출 색상의 면적을 비교하여 평가하였다. 평가 결과 소금을 검출하는 흰색의 경우 최소 25%에서 최대 99% 이상, 빨간색의 경우 최소 44%에서 최대 68%, 파란색과 녹색은 평균적으로 각각 7%와 15% 검출면적 증가가 있어 색상 검출 성능이 향상되었음을 확인할 수 있었으며, 이를 무인 천일염 포집장치의 무인작업 수행을 위한 위치 확인에 적용 가능할 것으로 사료된다.
This work was supported by the Korea Technology and Information Promotion Agency for SMEs (TIPA). (S2962532)
References
Korean Ministry of Oceans and Fisheries(2019), The 2nd Basic Salt Industry Promotion Plan, Solar Salt Industry Development Plan, p. 3.
Korean Statistical Information Service(2021), Dependency ratio and aging index by city and county. https://kosis.kr/statHtml/statHtml.do?tblId=DT_215007_007&orgId=215&language=kor &conn_path=&vw_cd=&list_id (accessed on 08.11.2021).
Muthalagu, R., A. Bolimera, and V. Kalaichelvi(2020), Lane detection technique based on perspective transformation and histogram analysis for self-driving cars., Computers & Electrical Engineering, Volume 85, p. 106653.https://doi.org/10.1016/j.compeleceng.2020.106653
Neven, D., B. D. Brabandere, S. Georgoulis, M. Proesmans, and L. V. Gool(2018), Towards End-to-End Lane Detection: an Instance Segmentation Approach., 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 286-291.
Park, K. M. and C. O. Bae(2019), A Study on Fire Detection in Ship Engine Rooms Using Convolutional Neural Network, Journal of the Korean Society of Marine Environment & Safety, Vol. 25, No. 4, pp. 476-481.https://doi.org/10.7837/kosomes.2019.25.4.476
Park, K. M., C. O. Bae, B. Y. Ahn, and Y. S. Park(2017), A Study on Abalone Young Shells Counting System using Machine Vision., Journal of the Korean Society of Marine Environment & Safety, Vol. 23, No. 4, pp. 415-420.https://doi.org/10.7837/kosomes.2017.23.4.415
Park, K. M.(2021), Machine Classification in Ship Engine Rooms Using Transfer Learning, Journal of the Korean Society of Marine Environment & Safety, Vol. 27, No. 2, pp. 363-368.https://doi.org/10.7837/kosomes.2021.27.2.363
Gonzalez, R. C. and R. E. Woods(2013), Digital Image Processing, 3rd Edition; PEARSON (Firstbook): Seoul, Korea.