과제정보
This work is supported by the talent introduction project of Chongqing University (02090011044159), and Fundamental Research Funds for the Central Universities (2022CDJXY-005), and the project of new technology and equipment of intelligent manufacturing (02090025020040).
참고문헌
- Alnujaie, A., Akba, E.D., Eltaher, M. and Assie, A. (2021). "Forced vibration of a functionally graded porous beam resting on viscoelastic foundation", Geomech. Eng., 24(1). http://doi.org/10.12989/gae.2021.24.1.091.
- Akba, E.D., Bashiri, A.H., Assie, A.E. and Eltaher, M.A. (2021), "Dynamic analysis of thick beams with functionally graded porous layers and viscoelastic support", J. Vib. Control, 27(13-14), 1644-1655. http://doi.org/10.1177/1077546320947302.
- Akgoz, B. and Civalek, O. (2017), "Effects of thermal and shear deformation on vibration response of functionally graded thick composite microbeams", Compos. Part B: Eng., 129, 77-87. https://doi.org/10.1016/j.compositesb.2017.07.024.
- Amar, L.H.H., Kaci, A., Yeghnem, R. and Tounsi, A. (2018), "A new four-unknown refined theory based on modified couplestress theory for size-dependent bending and vibration analysis of functionally graded micro-plate", Steel Compos. Struct., 26(1), 89-102. https://doi.org/10.12989/scs.2018.26.1.089.
- Asiri, S.A., Akba, E.D. and Eltaher, M. (2020), "Damped dynamic responses of a layered functionally graded thick beam under a pulse load", Struct. Eng. Mech., 75(6), 713-722. http://doi.org/ 10.12989/sem.2020.75.6.713.
- Attia, M.A. and Mohamed, S.A. (2020a), "Thermal vibration characteristics of pre/post-buckled bi-directional functionally graded tapered microbeams based on modified couple stress Reddy beam theory", Eng. Comput., https://doi.org/10.1007/s00366-020-01188-4.
- Attia, M.A. and Mohamed, S.A. (2020b), "Nonlinear thermal buckling and postbuckling analysis of bidirectional functionally graded tapered microbeams based on Reddy beam theory", Eng. Comput., https://doi.org/10.1007/s00366-020-01080-1.
- Babaei, H. (2021a), "Thermoelastic buckling and post-buckling behavior of temperature-dependent nanocomposite pipes reinforced with CNTs", Eur. Phys. J. Plus, 136(10). http://doi.org/10.1140/epjp/s13360-021-01992-x.
- Babaei, H.(2021b), "Large deflection analysis of fg-cnt reinforced composite pipes under thermal-mechanical coupling loading", Structures, 34, 886-900. http://doi.org/10.1016/j.istruc.2021.07.091.
- Babaei, H. (2021c), "Nonlinear analysis of size-dependent frequencies in porous fg curved nanotubes based on nonlocal strain gradient theory", Eng. With Comput., http://doi.org/10.1007/s00366-021-01317-7.
- Babaei, H. and Eslami, M. (2021a). "Nonlinear analysis of thermal-mechanical coupling bending of clamped fg porous curved micro-tubes", J. Therm. Stresses, 1-24. http://doi.org/10.1080/01495739.2020.1870417.
- Babaei, H. and Eslami, M. (2021b), "Thermally induced nonlinear stability and imperfection sensitivity of temperature- and size-dependent fg porous micro-tubes", Int. J. Mech. Mater. Design, 1-21. http://doi.org/10.1007/s10999-021-09531-3.
- Dehrouyeh-Semnani, A.M., Dehdashti, E., Yazdi, M. and Nikkhah-Bahrami, M. (2019), "Nonlinear thermo-resonant behavior of fluid-conveying FG pipes", Int. J. Eng. Sci., 144, 103141. https://doi.org/10.1016/j.ijengsci.2019.103141.
- Ding, H.X. and She, G.L. (2021), "A higher-order beam model for the snap-buckling analysis of FG pipes conveying fluid", Struct. Eng. Mech., 80(1), 63-72. https://doi.org/10.12989/sem.2021.80.1.063.
- Ebrahimi, F. and Farazmandnia, N. (2018), "Vibration analysis of functionally graded carbon nanotube-reinforced composite sandwich beams in thermal environment", Adv. Aircraft Sp. Sci., 5(1), 107-128. https://doi.org/10.12989/aas.2018.5.1.107.
- Emam, S. (2016), "Buckling and postbuckling of composite beams in hygrothermal environments", Compos. Struct., 152, 665-675. http://doi.org/10.1016/j.compstruct.2016.05.029.
- Fu, Y., Zhong, J., Shao, X. and Chen, Y. (2015), "Thermal postbuckling analysis of functionally graded tubes based on a refined beam model", Int. J. Mech. Sci., 96, 58-64. http://doi.org/10.1016/j.ijmecsci.2015.03.019.
- Ghandourah, E.E., Eltaher, M.A., Ahmed, H.M., Attia, M.A. and Abdraboh, A.M. (2021), "Free vibration of porous fg nonlocal modified couple nanobeams via a modified porosity model", Adv. Nano Res., 11(4). http://doi.org/10.12989/anr.2021.11.4.405.
- Golmakani, M.E., Malikan, M. and Pour, S.G. (2021), "Bending analysis of functionally graded nanoplates based on a higher-order shear deformation theory using dynamic relaxation method", Continuum Mech. Thermodynam., https://doi.org/10.1007/s00161-021-00995-4.
- Hadji, L., Meziane, M. and Safa, A. (2018), "A new quasi-3d higher shear deformation theory for vibration of functionally graded carbon nanotube-reinforced composite beams resting on elastic foundation", Struct. Eng. Mech., 66(6), 771-781. https://doi.org/10.12989/sem.2018.66.6.771.
- Hendi, A., Eltaher, M.A., Mohamed, S.A. and Attia, M. (2022), "Nonlinear thermal vibration of pre/post-buckled two-dimensional FGM tapered microbeams based on a higher order shear deformation theory", Steel Compos. Struct., 41(6), 787-802. https://doi.org/10.12989/scs.2022.41.6.787.
- Lu, L., She, G.L. and Guo, X. (2021), "Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199, 106428. https://doi.org/10.1016/j.ijmecsci.2021.106428.
- Mohamed, N., Mohamed, S. and Eltaher, M. (2020), "Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model", Eng. Comput., 37(4). http://doi.org/10.1007/s00366-020-00976-2.
- Mohamed, N., Mohamed, S.A. and Eltaher, M.A. (2022), "Nonlinear static stability of imperfect bio-inspired helicoidal composite beams", Mathematics, 10(7). http://doi.org/10,7. 10.3390/math10071084.
- Pinnola, F.P., Vaccaro, M.S., Barretta, R., Francesco, M. and Ruta, G. (2022), "Elasticity problems of beams on reaction-driven nonlocal foundation", Arch. Appl. Mech., 1-31. http://doi.org/10.1007/s00419-022-02161-x.
- Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Method. Eng., 47(1-3), 663-684. http://doi.org/10.1002/(SICI)10970207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8.
- She, G.L. (2021), "Guided wave propagation of porous functionally graded plates: The effect of thermal loadings", J. Therm. Stresses, 44(10), 1289-1305. https://doi.org/10.1080/01495739.2021.1974323.
- She, G.L., Ding, H.X. and Zhang, Y.W. (2022), "Wave propagation in a FG circular plate via the physical neutral surface concept", Struct. Eng. Mech., 82(2), 225-232. https://doi.org/10.12989/sem.2022.82.2.225.
- She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphenenanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.
- She, G.L., Yuan, F.G. and Ren, Y.R. (2017a), "Nonlinear analysis of bending, thermal buckling and post-buckling for functionally graded tubes by using a refined beam theory", Compos. Struct., 165, 74-82. https://doi.org/10.1016/j.compstruct.2017.01.013.
- She, G.L., Yuan, F.G., Ren, Y.R. and Xiao, W.S. (2017b), "On buckling and postbuckling behavior of nanotubes", Int. J. Eng. Sci., 121, 130-142. https://doi.org/10.1016/j.ijengsci.2017.09.005.
- Shen, H.S. (2013), A Two-Step Perturbation Method in Nonlinear Analysis of Beams, Plates and Shells, John Wiley & Sons Inc., Singapore.
- Shen, H.S. (2014), "Postbuckling of FGM cylindrical panels resting on elastic foundations subjected to axial compression under heat conduction", Int. J. Mech. Sci., 89, 453-461. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000439.
- Zenkour, A.M. and Radwan, A.F. (2019), "Bending response of FG plates resting on elastic foundations in hygro thermal environment with porosities", Compos. Struct., 213, 133-143. https://doi.org/10.1016/j.compstruct.2019.01.065.
- Zhao, J.L., Chen, X., She, G.L., Jing, Y., Bai, R.Q., Yi, J., Pu, H.Y., and Luo, J. (2022), "Vibration characteristics of functionally graded carbon nanotube-reinforced composite double-beams in thermal environments", Steel Compos. Struct., 43(6), 797-808. https://doi.org/10.12989/scs.2022.43.6.797.
- Zhang, Y.Y., Wang, Y.X., Zhang, X., Shen, H.M. and She, G.L. (2021), "On snap-buckling of FG-CNTR curved nanobeams considering surface effects", Steel Compos. Struct., 38(3), 293-304. https://doi.org/10.12989/scs.2021.38.3.293.
- Zhang,Y.W. and She,G.L. (2022), "Wave propagation and vibration of FG pipes conveying hot fluid", Steel Compos. Struct., 42(3), 397-405. https://doi.org/10.12989/scs.2022.42.3.397.