DOI QR코드

DOI QR Code

Soil Microbial Communities Associated with Three Arctic Plants in Different Local Environments in Ny-Ålesund, Svalbard

  • Son, Deokjoo (College of Education Department of Science Education, Dankook University) ;
  • Lee, Eun Ju (Biological Sciences, Seoul National University)
  • Received : 2022.08.08
  • Accepted : 2022.09.15
  • Published : 2022.10.28

Abstract

Understanding soil microbial community structure in the Arctic is essential for predicting the impact of climate change on interactions between organisms living in polar environments. The hypothesis of the present study was that soil microbial communities and soil chemical characteristics would vary depending on their associated plant species and local environments in Arctic mature soils. We analyzed soil bacterial communities and soil chemical characteristics from soil without vegetation (bare soil) and rhizosphere soil of three Arctic plants (Cassiope tetragona [L.] D. Don, Dryas octopetala L. and Silene acaulis [L.] Jacq.) in different local environments (coal-mined site and seashore-adjacent site). We did not observe any clear differences in microbial community structure in samples belonging to different plant rhizospheres; however, samples from different environmental sites had distinct microbial community structure. The samples from coal-mined site had a relatively higher abundance of Bacteroidetes and Firmicutes. On the other hand, Acidobacteria was more prevalent in seashore-adjacent samples. The relative abundance of Proteobacteria and Acidobacteria decreased toward higher soil pH, whereas that of Bacteroidetes and Firmicutes was positively correlated with soil pH. Our results suggest that soil bacterial community dissimilarity can be driven by spatial heterogeneity in deglaciated mature soil. Furthermore, these results indicate that soil microbial composition and relative abundance are more affected by soil pH, an abiotic factor, than plant species, a biotic factor.

Keywords

Acknowledgement

This study was supported by the National Research Foundation (NRF-2011-0021071).

References

  1. Schutte UME, Abdo Z, Bent SJ, Williams CJ, Schneider GM, Solheim B, et al. 2009. Bacterial succession in a glacier foreland of the High Arctic. ISME J. 3: 1258-1268. https://doi.org/10.1038/ismej.2009.71
  2. Mitchell RJ, Hester AJ, Campbell CD, Chapman SJ, Cameron CM, Hewison RL, et al. 2010. Is vegetation composition or soil chemistry the best predictor of the soil microbial community? Plant Soil 333: 417-430. https://doi.org/10.1007/s11104-010-0357-7
  3. Lauber CL, Strickland MS, Bradford MA, Fierer N. 2008. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol. Biochem. 40: 2407-2415. https://doi.org/10.1016/j.soilbio.2008.05.021
  4. Loganathachetti DS, Venkatachalam S, Jabir T, Vipindas PV, Krishnan KP. 2022. Total nitrogen influence bacterial community structure of active layer permafrost across summer and winter seasons in Ny-Alesund, Svalbard. World J. Microbiol. Biotechnol. 38: 28. https://doi.org/10.1007/s11274-021-03210-3
  5. Yang C-H, Crowley DE. 2000. Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl. Environ. Microbiol. 66: 345-351. https://doi.org/10.1128/AEM.66.1.345-351.2000
  6. Griffiths BS, Ritz K, Ebblewhite N, Dobson G. 1998. Soil microbial community structure: effects of substrate loading rates. Soil Biol. Biochem. 31: 145-153. https://doi.org/10.1016/S0038-0717(98)00117-5
  7. Tian Q, Taniguchi T, Shi W-Y, Li G, Yamanaka N, Du S. 2017. Land-use types and soil chemical properties influence soil microbial communities in the semiarid loess plateau region in China. Sci. Rep. 7: 45289. https://doi.org/10.1038/srep45289
  8. Venkatachalam S, Kannan VM, Saritha VN, Loganathachetti DS, Mohan M, Krishnan KP. 2021. Bacterial diversity and community structure along the glacier foreland of Midtre Lovenbreen, Svalbard, Arctic. Ecol. Indic. 126: 107704. https://doi.org/10.1016/j.ecolind.2021.107704
  9. Knelman JE, Legg TM, O'Neill SP, Washenberger CL, Gonzalez A, Cleveland CC, et al. 2012. Bacterial community structure and function change in association with colonizer plants during early primary succession in a glacier forefield. Soil Biol. Biochem. 46: 172-180. https://doi.org/10.1016/j.soilbio.2011.12.001
  10. Teixeira LCRS, Peixoto RS, Cury JC, Sul WJ, Pellizari VH, Tiedje J, et al. 2010. Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. ISME J. 4: 989-1001. https://doi.org/10.1038/ismej.2010.35
  11. Massaccesi L, Benucci GMN, Gigliotti G, Cocco S, Corti G, Agnelli A. 2015. Rhizosphere effect of three plant species of environment under periglacial conditions (Majella Massif, central Italy). Soil Biol. Biochem. 89: 184-195. https://doi.org/10.1016/j.soilbio.2015.07.010
  12. Hinsinger P, Plassard C, Tang C, Jaillard B. 2003. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248: 43-59. https://doi.org/10.1023/A:1022371130939
  13. Kotas P, Santruckova H, Elster J, Kastovska E. 2018. Soil microbial biomass, activity and community composition along altitudinal gradients in the High Arctic (Billefjorden, Svalbard). Biogeosciences 15: 1879-1894. https://doi.org/10.5194/bg-15-1879-2018
  14. Nazaries L, Pan Y, Bodrossy L, Baggs EM, Millard P, Murrell JC, et al. 2013. Evidence of microbial regulation of biogeochemical cycles from a study on methane flux and land use change. Appl. Environ. Microbiol. 79: 4031-4040. https://doi.org/10.1128/AEM.00095-13
  15. Pinto AJ, Raskin L. 2012. PCR biases distort bacterial and archaeal community structure in pyrosequencing datasets. PLoS One 7: e43093. https://doi.org/10.1371/journal.pone.0043093
  16. Soliman T, Yang S-Y, Yamazaki T, Jenke-Kodama H. 2017. Profiling soil microbial communities with next-generation sequencing: the influence of DNA kit selection and technician technical expertise. PeerJ. 5: e4178. https://doi.org/10.7717/peerj.4178
  17. Walker LR, Wardle DA, Bardgett RD, Clarkson BD. 2010. The use of chronosequences in studies of ecological succession and soil development. J. Ecol. 98: 725-736. https://doi.org/10.1111/j.1365-2745.2010.01664.x
  18. Kim M, Jung JY, Laffly D, Kwon HY, Lee YK. 2016. Shifts in bacterial community structure during succession in a glacier foreland of the High Arctic. FEMS Microbiol. Ecol. 93: fiw213.
  19. Hodkinson ID, Coulson SJ, Webb NR. 2003. Community assembly along proglacial chronosequences in the High Arctic: vegetation and soil development in north-west Svalbard. J. Ecol. 91: 651-663. https://doi.org/10.1046/j.1365-2745.2003.00786.x
  20. Kumar M, Mannisto MK, van Elsas JD, Nissinen RM. 2016. Plants impact structure and function of bacterial communities in Arctic soils. Plant Soil. 399: 319-332. https://doi.org/10.1007/s11104-015-2702-3
  21. Walker MD, Wahren CH, Hollister RD, Henry GH, Ahlquist LE, Alatalo JM, et al. 2006. Plant community responses to experimental warming across the tundra biome. Proc. Natl. Acad. Sci. USA 103: 1342-1346. https://doi.org/10.1073/pnas.0503198103
  22. Wookey PA, Aerts R, Bardgett RD, Baptist F, BrAThen KA, Cornelissen JHC, et al. 2009. Ecosystem feedbacks and cascade processes: understanding their role in the responses of Arctic and alpine ecosystems to environmental change. Global Change Biol. 15: 1153-1172. https://doi.org/10.1111/j.1365-2486.2008.01801.x
  23. Lopez-Moreno JI, Boike J, Sanchez-Lorenzo A, Pomeroy JW. 2016. Impact of climate warming on snow processes in Ny-Alesund, a polar maritime site at Svalbard. Glob. Planet. Change 146: 10-21. https://doi.org/10.1016/j.gloplacha.2016.09.006
  24. Bai Y, Xiang Q, Zhao K, Yu X, Chen Q, Ma M, et al. 2020. Plant and soil development cooperatively shaped the composition of the phod-harboring bacterial community along the primary succession in the Hailuogou Glacier Chronosequence. mSystems 5: e00475-00420.
  25. Dowdall M, Vicat K, Frearson I, Gerland S, Lind B, Shaw G. 2004. Assessment of the radiological impacts of historical coal mining operations on the environment of Ny-Alesund, Svalbard. J. Environ. Radioact. 71: 101-114. https://doi.org/10.1016/S0265-931X(03)00144-9
  26. Kim G, Yoon Y-J, Kim H-A, Cho H-j, Park K. 2017. Elemental composition of Arctic soils and aerosols in Ny-Alesund measured using laser-induced breakdown spectroscopy. Spectrochim. Acta B: At. Spectrosc. 134: 17-24. https://doi.org/10.1016/j.sab.2017.06.006
  27. Mapelli F, Marasco R, Fusi M, Scaglia B, Tsiamis G, Rolli E, et al. 2018. The stage of soil development modulates rhizosphere effect along a High Arctic desert chronosequence. ISME J. 12: 1188-1198. https://doi.org/10.1038/s41396-017-0026-4
  28. Uchida M, Nakatsubo T, Kanda H, Koizumi H. 2006. Estimation of the annual primary production of the lichen Cetrariella delisei in a glacier foreland in the High Arctic, Ny-Olesund, Svalbard. Polar Res. 25: 39-49.
  29. Chae N, Kang H, Kim Y, Hong SG, Lee BY, Choi T. 2016. CO2 efflux from the biological soil crusts of the High Arctic in a later stage of primary succession after deglaciation, Ny-Alesund, Svalbard, Norway. Appl. Soil Ecol. 98: 92-102. https://doi.org/10.1016/j.apsoil.2015.09.013
  30. Klanderud K, Totland o. 2004. Habitat dependent nurse effects of the dwarf-shrub Dryas octopetala on alpine and arctic plant community structure. Ecoscience 11: 410-420. https://doi.org/10.1080/11956860.2004.11682850
  31. Rozema J, Weijers S, Broekman R, Blokker P, Buizer B, Werleman C, et al. 2009. Annual growth of Cassiope tetragona as a proxy for Arctic climate: developing correlative and experimental transfer functions to reconstruct past summer temperature on a millennial time scale. Glob. Change Biol. 15: 1703-1715. https://doi.org/10.1111/j.1365-2486.2009.01858.x
  32. Mallik AU, Wdowiak JV, Cooper EJ. 2011. Growth and reproductive responses of Cassiope tetragona, a circumpolar evergreen shrub, to experimentally delayed snowmelt. Arct. Antarct. Alp. Res. 43: 404-409. https://doi.org/10.1657/1938-4246-43.3.404
  33. Myers-Smith IH, Hallinger M, Blok D, Sass-Klaassen U, Rayback SA, Weijers S, et al. 2015. Methods for measuring arctic and alpine shrub growth: A review. Earth-Sci. Rev. 140: 1-13. https://doi.org/10.1016/j.earscirev.2014.10.004
  34. Bonanomi G, Stinca A, Chirico GB, Ciaschetti G, Saracino A, Incerti G, et al. 2016. Cushion plant morphology controls biogenic capability and facilitation effects of Silene acaulis along an elevation gradient. Funct. Ecol. 30: 1216-1226. https://doi.org/10.1111/1365-2435.12596
  35. DeMarche ML, Doak DF, Morris WF. 2018. Both life-history plasticity and local adaptation will shape range-wide responses to climate warming in the tundra plant Silene acaulis. Global Change Biol. 24: 1614-1625. https://doi.org/10.1111/gcb.13990
  36. Gillespie MAK, Baggesen N, Cooper EJ. 2016. High Arctic flowering phenology and plant-pollinator interactions in response to delayed snow melt and simulated warming. Environ. Res. Lett. 11: 115006. https://doi.org/10.1088/1748-9326/11/11/115006
  37. Dean WE. 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition; comparison with other methods. J. Sediment. Res. 44: 242-248.
  38. Nogueirol RC, de Melo WJ, Bertoncini EI, Alleoni LRF. 2013. Concentrations of Cu, Fe, Mn, and Zn in tropical soils amended with sewage sludge and composted sewage sludge. Environ. Monit. Assess. 185: 2929-2938. https://doi.org/10.1007/s10661-012-2761-3
  39. Takahashi S, Tomita J, Nishioka K, Hisada T, Nishijima M. 2014. Development of a prokaryotic universal primer for simultaneous analysis of Bacteria and Archaea using next-generation sequencing. PLoS One 9: e105592. https://doi.org/10.1371/journal.pone.0105592
  40. Kang MS, Hur M, Park SJ. 2019. Rhizocompartments and environmental factors affect microbial composition and variation in native plants. J. Microbiol. 57: 550-561. https://doi.org/10.1007/s12275-019-8646-1
  41. Choi H, Koh H-W, Kim H, Chae J-C, Park S-J. 2016. Microbial community composition in the marine sediments of Jeju Island: nextgeneration sequencing surveys. J. Microbiol. Biotechnol. 26: 883-890. https://doi.org/10.4014/jmb.1512.12036
  42. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. 2009. Introducing mothur: open-source, platformindependent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75: 7537-7541. https://doi.org/10.1128/AEM.01541-09
  43. Choi S-B, Kim J-G, Jung M-Y, Kim S-J, Min U-G, Si O-J, et al. 2016. Cultivation and biochemical characterization of heterotrophic bacteria associated with phytoplankton bloom in the Amundsen sea polynya, Antarctica. Deep Sea Res. Part II Top. Stud. Oceanogr. 123: 126-134. https://doi.org/10.1016/j.dsr2.2015.04.027
  44. Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA, et al. 2003. The ribosomal database project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res. 31: 442-443. https://doi.org/10.1093/nar/gkg039
  45. Bunge J, Barger K. 2008. Parametric models for estimating the number of classes. Biom. J. 50: 971-982. https://doi.org/10.1002/bimj.200810452
  46. Kwon HY, Jung JY, Kim O-S, Laffly D, Lim HS, Lee YK. 2015. Soil development and bacterial community shifts along the chronosequence of the Midtre Lovenbreen glacier foreland in Svalbard. J. Ecol. Environ. 38: 461-476. https://doi.org/10.5141/ecoenv.2015.049
  47. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. https://doi.org/10.1093/molbev/mst197
  48. Yao R, Yang J, Wang X, Xie W, Zheng F, Li H, et al. 2021. Response of soil characteristics and bacterial communities to nitrogen fertilization gradients in a coastal salt-affected agroecosystem. Land Degrad. Dev. 32: 338-353. https://doi.org/10.1002/ldr.3705
  49. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. 2020. Vegan: community ecology package. R package version 2.5-7.
  50. R Development Core Team. 2016. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. www.R-project.org.
  51. McKnight, P.E. Najab, J. 2010. Mann-Whitney U Test. In the Corsini Encyclopedia of Psychology (eds. Weiner IB, Craighead WE).
  52. Lee SH, Jang I, Chae N, Choi T, Kang H. 2013. Organic layer serves as a hotspot of microbial activity and abundance in Arctic tundra soils. Microb. Ecol. 65: 405-414. https://doi.org/10.1007/s00248-012-0125-8
  53. Van Der Wal R, Madan N, Van Lieshout S, Dormann C, Langvatn R, Albon SD. 2000. Trading forage quality for quantity? Plant phenology and patch choice by Svalbard reindeer. Oecologia. 123: 108-115. https://doi.org/10.1007/s004420050995
  54. Pacyna AD, Frankowski M, KoziolK, Wegrzyn MH, Wietrzyk-Pelka P, Lehmann-Konera S, et al. 2019. Evaluation of the use of reindeer droppings for monitoring essential and non-essential elements in the polar terrestrial environment. Sci. Total Environ. 658: 1209-1218. https://doi.org/10.1016/j.scitotenv.2018.12.232
  55. Lin X, Wang S, Ma X, Xu G, Luo C, Li Y, et al. 2009. Fluxes of CO2, CH4, and N2O in an alpine meadow affected by yak excreta on the Qinghai-Tibetan plateau during summer grazing periods. Soil Biol. Biochem. 41: 718-725. https://doi.org/10.1016/j.soilbio.2009.01.007
  56. Chu H, Neufeld JD, Walker VK, Grogan P. 2011. The influence of vegetation type on the dominant soil bacteria, archaea, and fungi in a low Arctic tundra landscape. Soil Sci. Soc. Am. J. 75: 1756-1765. https://doi.org/10.2136/sssaj2011.0057
  57. Wallenstein MD, McMahon S, Schimel J. 2007. Bacterial and fungal community structure in Arctic tundra tussock and shrub soils. FEMS Microbiol. Ecol. 59: 428-435. https://doi.org/10.1111/j.1574-6941.2006.00260.x
  58. Garbeva P, van Veen JA, van Elsas JD. 2004. Microbial diversity in soil: selection microbial populations by plant and soil type and implications for disease suppressiveness. Annu. Rev. Phytopathol. 42: 243-270. https://doi.org/10.1146/annurev.phyto.42.012604.135455
  59. Viitamaki S, Pessi IS, Virkkala A-M, Niittynen P, Kemppinen J, Eronen-Rasimus E, et al. 2022. The activity and functions of soil microbial communities in the Finnish sub-Arctic vary across vegetation types. FEMS Microbiol. Ecol. 98: fiac079. https://doi.org/10.1093/femsec/fiac079
  60. Mannisto MK, Tiirola M, Haggblom MM. 2007. Bacterial communities in Arctic fjelds of Finnish Lapland are stable but highly pHdependent. FEMS Microbiol. Ecol. 59: 452-465. https://doi.org/10.1111/j.1574-6941.2006.00232.x
  61. Malard LA, Pearce DA. 2018. Microbial diversity and biogeography in Arctic soils. Environ. Microbiol. Rep.10: 611-625. https://doi.org/10.1111/1758-2229.12680
  62. Cockell CS, Olsson K, Knowles F, Kelly L, Herrera A, Thorsteinsson T, et al. 2009. Bacteria in weathered Basaltic Glass, Iceland. Geomicrobiol. J. 26: 491-507. https://doi.org/10.1080/01490450903061101
  63. Schostag M, Stibal M, Jacobsen CS, Baelum J, Tas N, Elberling B, et al. 2015. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses. Front. Microbiol. 6: 399.
  64. Wang NF, Zhang T, Yang X, Wang S, Yu Y, Dong LL, et al. 2016. Diversity and composition of bacterial community in soils and lake sediments from an arctic lake area. Front. Microbiol. 7: 1170.
  65. Almela P, Justel A, Quesada A. 2021. Heterogeneity of microbial communities in soils from the Antarctic Peninsula region. Front. Microbiol. 12: 628792. https://doi.org/10.3389/fmicb.2021.628792
  66. Rousk J, Baath E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, et al. 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 4: 1340-1351. https://doi.org/10.1038/ismej.2010.58
  67. Fierer N, Bradford MA, Jackson RB. 2007. Toward an ecological classification of soil bacteria. Ecology 88: 1354-1364. https://doi.org/10.1890/05-1839
  68. Chu H, Fierer N, Lauber CL, Caporaso JG, Knight R, Grogan P. 2010. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environ. Microbiol. 12: 2998-3006. https://doi.org/10.1111/j.1462-2920.2010.02277.x
  69. Sridevi G, Minocha R, Turlapati SA, Goldfarb KC, Brodie EL, Tisa LS, et al. 2012. Soil bacterial communities of a calciumsupplemented and a reference watershed at the Hubbard Brook Experimental Forest (HBEF), New Hampshire, USA. FEMS Microbiol. Ecol. 79: 728-740. https://doi.org/10.1111/j.1574-6941.2011.01258.x
  70. Shen C, Xiong J, Zhang H, Feng Y, Lin X, Li X, et al. 2013. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biol. Biochem. 57: 204-211. https://doi.org/10.1016/j.soilbio.2012.07.013
  71. Malard LA, Anwar MZ, Jacobsen CS, Pearce DA. 2019. Biogeographical patterns in soil bacterial communities across the Arctic region. FEMS Microbiol. Ecol. 95: fiz128. https://doi.org/10.1093/femsec/fiz128
  72. Kastovska K, Elster J, Stibal M, Santruckova H. 2005. Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (high arctic). Microb. Ecol. 50: 396-407. https://doi.org/10.1007/s00248-005-0246-4
  73. Chen MM, Zhu YG, Su YH, Chen BD, Fu BJ, Marschner P. 2007. Effects of soil moisture and plant interactions on the soil microbial community structure. Eur. J. Soil Biol. 43: 31-38. https://doi.org/10.1016/j.ejsobi.2006.05.001
  74. Khalmuratova I, Choi DH, Kim JG, Lee IS. 2021. Endophytic fungi of salt-tolerant plants: diversity and ability to promote plant growth. J. Microbiol. Biotechnol. 31: 1526-1532. https://doi.org/10.4014/jmb.2106.06007
  75. Van Horn DJ, Van Horn ML, Barrett JE, Gooseff MN, Altrichter AE, Geyer KM, et al. 2013. Factors controlling soil microbial biomass and bacterial diversity and community composition in a cold desert ecosystem: role of geographic scale. PLoS One 8: e66103. https://doi.org/10.1371/journal.pone.0066103
  76. Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH. 2012. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat. Rev. Microbiol. 10: 497-506. https://doi.org/10.1038/nrmicro2795