DOI QR코드

DOI QR Code

KIF26B-AS1 Regulates TLR4 and Activates the TLR4 Signaling Pathway to Promote Malignant Progression of Laryngeal Cancer

  • Li, Li (Department of Otolaryngology, Head and Neck Surgery, The First People's Hospital of Lianyungang City) ;
  • Han, Jiahui (Department of Otolaryngology, Head and Neck Surgery, The First People's Hospital of Lianyungang City) ;
  • Zhang, Shujia (Department of Otolaryngology, Head and Neck Surgery, The First People's Hospital of Lianyungang City) ;
  • Dong, Chunguang (Department of Otolaryngology, Head and Neck Surgery, The First People's Hospital of Lianyungang City) ;
  • Xiao, Xiang (Department of Otolaryngology, Head and Neck Surgery, The First People's Hospital of Lianyungang City)
  • Received : 2022.03.21
  • Accepted : 2022.07.04
  • Published : 2022.10.28

Abstract

Laryngeal cancer is one of the highest incidence, most prevalently diagnosed head and neck cancers, making it critically necessary to probe effective targets for laryngeal cancer treatment. Here, real-time quantitative reverse transcription PCR (qRT-PCR) and western blot analysis were used to detect gene expression levels in laryngeal cancer cell lines. Fluorescence in situ hybridization (FISH) and subcellular fractionation assays were used to detect the subcellular location. Functional assays encompassing Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), transwell and wound healing assays were performed to examine the effects of target genes on cell proliferation and migration in laryngeal cancer. The in vivo effects were proved by animal experiments. RNA-binding protein immunoprecipitation (RIP), RNA pulldown and luciferase reporter assays were used to investigate the underlying regulatory mechanisms. The results showed that KIF26B antisense RNA 1 (KIF26B-AS1) propels cell proliferation and migration in laryngeal cancer and regulates the toll-like receptor 4 (TLR4) signaling pathway. KIF26B-AS1 also recruits FUS to stabilize TLR4 mRNA, consequently activating the TLR4 signaling pathway. Furthermore, KIF26B-AS1 plays an oncogenic role in laryngeal cancer via upregulating TLR4 expression as well as the FUS/TLR4 pathway axis, findings which offer novel insight for targeted therapies in the treatment of laryngeal cancer patients.

Keywords

Acknowledgement

We thank all our experimenters for their efforts. This research did not receive any specific funding from agencies in the public, commercial, or not-for-profit sectors.

References

  1. Bozzato A, Pillong L, Schick B, Lell MM. 2020. [Current diagnostic imaging and treatment planning for laryngeal cancer]. Radiologe 60: 1026-1037. https://doi.org/10.1007/s00117-020-00757-4
  2. Vassileiou A, Vlastarakos PV, Kandiloros D, Delicha E, Ferekidis E, Tzagaroulakis A, et al. 2012. Laryngeal cancer: smoking is not the only risk factor. B-ENT 8: 273-278.
  3. Altieri A, Garavello W, Bosetti C, Gallus S, La Vecchia C. 2005. Alcohol consumption and risk of laryngeal cancer. Oral Oncol. 41: 956-965. https://doi.org/10.1016/j.oraloncology.2005.02.004
  4. Obid R, Redlich M, Tomeh C. 2019. The treatment of laryngeal cancer. Oral Maxillofac. Surge. Clin. North Am. 31: 1-11. https://doi.org/10.1016/j.coms.2018.09.001
  5. Forastiere AA, Goepfert H, Maor M, Pajak TF, Weber R, Morrison W, et al. 2003. Concurrent chemotherapy and radiotherapy for organ preservation in advanced laryngeal cancer. New Eng. J. Med. 349: 2091-2098. https://doi.org/10.1056/NEJMoa031317
  6. Baird BJ, Sung CK, Beadle BM, Divi V. 2018. Treatment of early-stage laryngeal cancer: A comparison of treatment options. Oral Oncol. 87: 8-16. https://doi.org/10.1016/j.oraloncology.2018.09.012
  7. Huh G, Ahn SH, Suk JG, Lee MH, Kim WS, Kwon SK, et al. 2020. Severe late dysphagia after multimodal treatment of stage III/IV laryngeal and hypopharyngeal cancer. Jpn. J. Clin. Oncol. 50: 185-192. https://doi.org/10.1093/jjco/hyz158
  8. Peters TT, van der Laan BF, Plaat BE, Wedman J, Langendijk JA, Halmos GB. 2011. The impact of comorbidity on treatment-related side effects in older patients with laryngeal cancer. Oral Oncol. 47: 56-61. https://doi.org/10.1016/j.oraloncology.2010.10.016
  9. Ma L, Bajic VB, Zhang Z. 2013. On the classification of long non-coding RNAs. RNA Biol. 10: 925-933.
  10. Huang Y, Guo Q, Ding XP, Wang X. 2020. Mechanism of long noncoding RNAs as transcriptional regulators in cancer. RNA Biol. 17: 1680-1692. https://doi.org/10.1080/15476286.2019.1710405
  11. Fang Y, Fullwood MJ. 2016. Roles, functions, and mechanisms of long non-coding RNAs in cancer. Genomics Proteomics Bioinformatics 14: 42-54. https://doi.org/10.1016/j.gpb.2015.09.006
  12. Bhan A, Soleimani M, Mandal SS. 2017. Long noncoding RNA and cancer: a new paradigm. Cancer Res. 77: 3965-3981.
  13. Yang L, Xue Y, Liu J, Zhuang J, Shen L, Shen B, et al. 2017. Long noncoding RNA ASAP1-IT1 promotes cancer stemness and predicts a poor prognosis in patients with bladder cancer. Neoplasma 64: 847-855. https://doi.org/10.4149/neo_2017_606
  14. Cossu AM, Mosca L, Zappavigna S, Misso G, Bocchetti M, De Micco F, et al. 2019. Long non-coding RNAs as important biomarkers in laryngeal cancer and other head and neck tumours. Int. J. Mol. Sci. 20: 3444. https://doi.org/10.3390/ijms20143444
  15. Li H, Zhang H, Wang G, Chen Z, Pan Y. 2020. LncRNA LBX2-AS1 facilitates abdominal aortic aneurysm through miR-4685-5p/ LBX2 feedback loop. Biomed. Pharmacother. 129: 109904. https://doi.org/10.1016/j.biopha.2020.109904
  16. Guan X, Zong ZH, Liu Y, Chen S, Wang LL, Zhao Y. 2019. circPUM1 promotes tumorigenesis and progression of ovarian cancer by sponging miR-615-5p and miR-6753-5p. Mol. Ther. Nucleic Acids 18: 882-892. https://doi.org/10.1016/j.omtn.2019.09.032
  17. Liu T, Zuo JJ, Li F, Xu YC, Zheng AY, Tao ZZ. 2019. LncRNA SNHG1 promotes cell proliferation in laryngeal cancer via Notch1 signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 23: 6562-6569.
  18. Zhuang S, Liu F, Wu P. 2019. Upregulation of long noncoding RNA TUG1 contributes to the development of laryngocarcinoma by targeting miR-145-5p/ROCK1 axis. J. Cell. Biochem. 120: 13392-13402. https://doi.org/10.1002/jcb.28614
  19. Yuan Z, Xiu C, Song K, Pei R, Miao S, Mao X, et al. 2018. Long non-coding RNA AFAP1-AS1/miR-320a/RBPJ axis regulates laryngeal carcinoma cell stemness and chemoresistance. J. Cell. Mol. Med. 22: 4253-4262. https://doi.org/10.1111/jcmm.13707
  20. Hu W, Dong N, Huang J, Ye B. 2019. Long non-coding RNA PCAT1 promotes cell migration and invasion in human laryngeal cancer by sponging miR-210-3p. J. BUON 24: 2429-2434.
  21. Portz B, Lee BL, Shorter J. 2021. FUS and TDP-43 phases in health and disease. Trends Biochem. Sci. 46: 550-563. https://doi.org/10.1016/j.tibs.2020.12.005
  22. Chen T, Wang X, Li C, Zhang H, Liu Y, Han D, et al. 2021. CircHIF1A regulated by FUS accelerates triple-negative breast cancer progression by modulating NFIB expression and translocation. Oncogene 40: 2756-2771. https://doi.org/10.1038/s41388-021-01739-z
  23. Wang J, Zhang Y, Song H, Yin H, Jiang T, Xu Y, et al. 2021. The circular RNA circSPARC enhances the migration and proliferation of colorectal cancer by regulating the JAK/STAT pathway. Mol. Cancer 20: 81. https://doi.org/10.1186/s12943-021-01375-x
  24. Chen J, Wu Y, Luo X, Jin D, Zhou W, Ju Z, et al. 2021. Circular RNA circRHOBTB3 represses metastasis by regulating the HuRmediated mRNA stability of PTBP1 in colorectal cancer. Theranostics 11: 7507-7526. https://doi.org/10.7150/thno.59546
  25. Bian S. 2020. miR-4319 inhibited the development of thyroid cancer by modulating FUS-stabilized SMURF1. J. Cell. Biochem. 121: 174-182. https://doi.org/10.1002/jcb.29026
  26. Wu T, Wang G, Zeng X, Sun Z, Li S, Wang W, et al. 2021. Hsa_circ_0006232 promotes laryngeal squamous cell cancer progression through FUS-mediated EZH2 stabilization. Cell Cycle 20: 1799-1811. https://doi.org/10.1080/15384101.2021.1959973
  27. Hasnat S, Hujanen R, Nwaru BI, Salo T, Salem A. 2020. The prognostic value of toll-like receptors in head and neck squamous cell carcinoma: A systematic review and meta-analysis. Int. J. Mol. Sci. 21: 7255. https://doi.org/10.3390/ijms21197255
  28. Li JH, Liu S, Zhou H, Qu LH, Yang JH. 2014. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 42: D92-97. https://doi.org/10.1093/nar/gkt1248
  29. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. 2016. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44: D457-462. https://doi.org/10.1093/nar/gkv1070
  30. Canzler S, Hackermuller J. 2020. multiGSEA: a GSEA-based pathway enrichment analysis for multi-omics data. BMC Bioinformatics 21: 561. https://doi.org/10.1186/s12859-020-03910-x
  31. Shen HB, Chou KC. 2009. A top-down approach to enhance the power of predicting human protein subcellular localization: HummPLoc 2.0. Anal. Biochem. 394: 269-274. https://doi.org/10.1016/j.ab.2009.07.046
  32. Lin Y, Pan X, Shen HB. 2021. lncLocator 2.0: a cell-line-specific subcellular localization predictor for long non-coding RNAs with interpretable deep learning. Bioinformatics doi: 10.1093/bioinformatics/btab127. Online ahead of print.
  33. Zhao W, Jin Y, Wu P, Yang J, Chen Y, Yang Q, et al. 2020. LINC00355 induces gastric cancer proliferation and invasion through promoting ubiquitination of P53. Cell Death Discov. 6: 99. https://doi.org/10.1038/s41420-020-00332-9
  34. Zhou P, Li Y, Li B, Zhang M, Liu Y, Yao Y, et al. 2019. NMIIA promotes tumor growth and metastasis by activating the Wnt/β-catenin signaling pathway and EMT in pancreatic cancer. Oncogene 38: 5500-5515. https://doi.org/10.1038/s41388-019-0806-6
  35. Szczepanski MJ, Czystowska M, Szajnik M, Harasymczuk M, Boyiadzis M, Kruk-Zagajewska A, et al. 2009. Triggering of Toll-like receptor 4 expressed on human head and neck squamous cell carcinoma promotes tumor development and protects the tumor from immune attack. Cancer Res. 69: 3105-3113.
  36. Lim KH, Staudt LM. 2013. Toll-like receptor signaling. Cold Spring Harbor Perspect. Biol. 5: a011247. https://doi.org/10.1101/cshperspect.a011247
  37. Panaro MA, Corrado A, Benameur T, Paolo CF, Cici D, Porro C. 2020. The emerging role of curcumin in the modulation of TLR-4 signaling pathway: Focus on neuroprotective and anti-rheumatic properties. Int. J. Mol. Sci. 21: 2299. https://doi.org/10.3390/ijms21072299
  38. Zhang X, Wang S, Wang H, Cao J, Huang X, Chen Z, et al. 2019. Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Mol. Cancer 18: 20. https://doi.org/10.1186/s12943-018-0935-5
  39. Zhang X, Wu N, Wang J, Li Z. 2019. LncRNA MEG3 inhibits cell proliferation and induces apoptosis in laryngeal cancer via miR-23a/ APAF-1 axis. J. Cell. Mol. Med. 23: 6708-6719. https://doi.org/10.1111/jcmm.14549
  40. Yang T, Li S, Liu J, Yin D, Yang X, Tang Q. 2018. lncRNA-NKILA/NF-κB feedback loop modulates laryngeal cancer cell proliferation, invasion, and radioresistance. Cancer Med. 7: 2048-2063. https://doi.org/10.1002/cam4.1405
  41. Sheng J, He X, Yu W, Chen Y, Long Y, Wang K, et al. 2021. p53-targeted lncRNA ST7-AS1 acts as a tumour suppressor by interacting with PTBP1 to suppress the Wnt/β-catenin signalling pathway in glioma. Cancer Lett. 503: 54-68. https://doi.org/10.1016/j.canlet.2020.12.039
  42. Huang DN, Liu HW, Li ZD. 2020. Expression of lncRNA-ATB in laryngeal carcinoma and its relationship with prognosis. Eur. Rev. Med. Pharmacol. Sci. 24: 11148-11153.
  43. Wang X, Yu B, Jin Q, Zhang J, Yan B, Yang L, et al. 2020. Regulation of laryngeal squamous cell cancer progression by the lncRNA RP11-159K7.2/miR-206/DNMT3A axis. J. Cell. Mol. Med. 24: 6781-6795. https://doi.org/10.1111/jcmm.15331
  44. Mao J, Sun Z, Cui Y, Du N, Guo H, Wei J, et al. 2020. PCBP2 promotes the development of glioma by regulating FHL3/TGF-β/Smad signaling pathway. J. Cell. Physiol. 235: 3280-3291. https://doi.org/10.1002/jcp.29104
  45. Sun Z, Luo Q, Ye D, Chen W, Chen F. 2012. Role of toll-like receptor 4 on the immune escape of human oral squamous cell carcinoma and resistance of cisplatin-induced apoptosis. Mol. Cancer 11: 33. https://doi.org/10.1186/1476-4598-11-33
  46. Szajnik M, Szczepanski MJ, Czystowska M, Elishaev E, Mandapathil M, Nowak-Markwitz E, et al. 2009. TLR4 signaling induced by lipopolysaccharide or paclitaxel regulates tumor survival and chemoresistance in ovarian cancer. Oncogene 28: 4353-4363. https://doi.org/10.1038/onc.2009.289
  47. Silveira HS, Lupi LA, Romagnoli GG, Kaneno R, da Silva Nunes I, Favaro WJ, et al. 2020. P-MAPA activates TLR2 and TLR4 signaling while its combination with IL-12 stimulates CD4+ and CD8+ effector T cells in ovarian cancer. Life Sci. 254: 117786. https://doi.org/10.1016/j.lfs.2020.117786
  48. Ou T, Lilly M, Jiang W. 2018. The pathologic role of toll-like receptor 4 in prostate cancer. Front. Immunol. 9: 1188. https://doi.org/10.3389/fimmu.2018.01188
  49. Liu H, Sun Y, Tian H, Xiao X, Zhang J, Wang Y, et al. 2019. Characterization of long non-coding RNA and messenger RNA profiles in laryngeal cancer by weighted gene co-expression network analysis. Aging 11: 10074-10099. https://doi.org/10.18632/aging.102419
  50. Zhang G, Fan E, Zhong Q, Feng G, Shuai Y, Wu M, et al. 2019. Identification and potential mechanisms of a 4-lncRNA signature that predicts prognosis in patients with laryngeal cancer. Hum. Genomics 13: 36. https://doi.org/10.1186/s40246-019-0230-6
  51. Feng Y, Yang Y, Zhao X, Fan Y, Zhou L, Rong J, et al. 2019. Circular RNA circ0005276 promotes the proliferation and migration of prostate cancer cells by interacting with FUS to transcriptionally activate XIAP. Cell Death Dis. 10: 792. https://doi.org/10.1038/s41419-019-2028-9
  52. Xie P, Guo Y. 2020. LINC00205 promotes malignancy in lung cancer by recruiting FUS and stabilizing CSDE1. Biosci. Rep. 40:BSR20190701. https://doi.org/10.1042/BSR20190701