DOI QR코드

DOI QR Code

노지 과수원 토성별 수분보유 특성 및 FDR 센서 보정계수 비교

Comparisons of Soil Water Retention Characteristics and FDR Sensor Calibration of Field Soils in Korean Orchards

  • 이기람 (고려대학교 식물생명공학과) ;
  • 김종균 (고려대학교 식물생명공학과) ;
  • 이재범 (고려대학교 식물생명공학과) ;
  • 김종윤 (고려대학교 식물생명공학과)
  • Lee, Kiram (Department of Plant Biotechnology, Korea University) ;
  • Kim, Jongkyun (Department of Plant Biotechnology, Korea University) ;
  • Lee, Jaebeom (Department of Plant Biotechnology, Korea University) ;
  • Kim, Jongyun (Department of Plant Biotechnology, Korea University)
  • 투고 : 2022.09.29
  • 심사 : 2022.10.19
  • 발행 : 2022.10.31

초록

최근 원예작물의 지속가능한 생산을 위한 작물 생육환경 센싱 기반 복합환경제어시스템 연구와 산업적 이용이 부각되면서, 노지재배에 적용하기 적합한 토양센서 활용 방안 연구가 활발히 이루어지고 있다. 본 연구는 산업 및 연구 현장에서 많이 사용되고 있는 TEROS 12 FDR 센서(frequency domain reflectometry sensor)를 노지 과수원의 토양에 알맞게 활용하기 위하여 국내 세 지역 과수원 토양의 토성별 FDR 센서 활용 방법을 제시하고자 수행하였다. 실제 과수가 재배되고 있는 각 과수원에서 토양을 채취하여, 토성 및 토양수분보유곡선을 조사하였으며, 토양별 TEROS 12 센서 Raw 값과 이에 대응하는 용적수분함량 값을 선형 회귀 분석, 3차 회귀 분석을 통해 보정식을 얻은 뒤 제조사에서 제공하는 광질 토양 보정식과 비교 분석하였다. 채취한 세 과수원의 토양은 모두 토성이 달랐으며, 토성에 따라 각 보수력에 따른 용적수분함량 수치에 차이가 있었다. 또한, TEROS 12 센서 보정식에서는 모든 토양에서 3차 회귀 분석 보정식이 결정계수 0.95 이상으로 가장 높게 나타났으며, RMSE도 가장 낮게 나타났다. 제조사에서 제공하는 보정식을 사용하여 TEROS 12 센서의 용적수분함량을 보정할 경우 토양에 따라 실제 수치에 비해 최대 0.09-0.17m3·m-3가량 낮게 나타나, FDR 센서 사용시 적용 토양에 알맞은 보정이 반드시 선행되어야 함을 확인하였다. 또한 토성에 따라 토양의 보수력 구간에 따른 용적수분함량 범위의 차이가 있었으며, 토양 용적수분함량의 수치 해석에 보수력 정보가 수반되어야 할 것으로 나타났다. 또한, 사질이 많은 토양에서는 관수 개시점 측정을 위해 FDR 센서를 활용하는 데 있어 용적수분함량 측정 범위가 상대적으로 좁아 정밀도가 떨어질 것으로 판단되었다. 결론적으로 토양에서 FDR 센서를 통해 토양수분의 변화를 알맞게 해석하고 노지에서 알맞은 관수 시점을 선정하기 위해서는, 적용 토양의 수분보유특성을 파악하고 FDR 센서 보정을 선행하여 올바른 토양 수분 정보 제공이 필요할 것이다.

As research on a controlled environment system based on crop growth environment sensing for sustainable production of horticultural crops and its industrial use has been important, research on how to properly utilize soil moisture sensors for outdoor cultivation is being actively conducted. This experiment was conducted to suggest the proper method of utilizing the TEROS 12, an FDR (frequency domain reflectometry) sensor, which is frequently used in industry and research fields, for each orchard soil in three regions in Korea. We collected soils from each orchard where fruit trees were grown, investigated the soil characteristics and soil water retention curve, and compared TEROS 12 sensor calibration equations to correlate the sensor output to the corresponding soil volumetric water content through linear and cubic regressions for each soil sample. The estimated value from the calibration equation provided by the manufacturer was also compared. The soil collected from all three orchards showed different soil characteristics and volumetric water content values by each soil water retention level across the soil samples. In addition, the cubic calibration equation for TEROS 12 sensor showed the highest coefficient of determination higher than 0.95, and the lowest RMSE for all soil samples. When estimating volumetric water contents from TEROS 12 sensor output using the calibration equation provided by the manufacturer, their calculated volumetric water contents were lower than the actual volumetric water contents, with the difference up to 0.09-0.17 m3·m-3 depending on the soil samples, indicating an appropriate calibration for each soil should be preceded before FDR sensor utilization. Also, there was a difference in the range of soil volumetric water content corresponding to the soil water retention levels across the soil samples, suggesting that the soil water retention information should be required to properly interpret the volumetric water content value of the soil. Moreover, soil with a high content of sand had a relatively narrow range of volumetric water contents for irrigation, thus reducing the accuracy of an FDR sensor measurement. In conclusion, analyzing soil water retention characteristics of the target soil and the soil-specific calibration would be necessary to properly quantify the soil water status and determine their adequate irrigation point using an FDR sensor.

키워드

과제정보

본 연구는 농촌진흥청 농업정책지원기술개발사업(PJ015643)의 지원에 의하여 수행되었음.

참고문헌

  1. Adeboye O.B., B. Schultz, A.P. Adeboye, K.O. Adekalu, and J.A. Osunbitan 2021, Application of the AquaCrop model in decision support for optimization of nitrogen fertilizer and water productivity of soybeans. Inf Proc Agric 8:419-436. doi:10.1016/j.inpa.2020.10.002
  2. Arya L.M., and J.F. Paris 1981, A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data. Soil Sci Soc Am J 45: 1023-1030. doi:10.2136/sssaj1981.03615995004500060004x
  3. Bohme B., M. Becker, and B. Diekkruger 2013, Calibrating a FDR sensor for soil moisture monitoring in a wetland in Central Kenya. Phys Chem Earth, Parts A/B/C 66:101-111. doi:10.1016/j.pce.2013.09.004
  4. Caron J., S. Bonin, S. Pepin, L. Kummer, C. Vanderleest, and W.L. Bland 2016, Determination of irrigation set points for cranberries from soil-and plant-based measurements. Can J Soil Sci 96:37-50. doi:10.1139/cjss-2015-0037
  5. Dolezal F., T. Litschmann, J. Kucera, J. Peterkova, J. Zavadil, J. Vacek, P. Prazak, E. Pilna, T. Bayer, and M. Nechvatal 2008, Field and laboratory ad hoc calibrations of Virrib and ThetaProbe dielectric sensors for soil moisture measurements. Soil Water Res 3:199-214. doi:10.17221/18/2008-SWR
  6. Geroy I.J., M.M. Gribb, H.P. Marshall, D.G. Chandler, S.G. Benner, and J.P. McNamara 2011, Aspect influences on soil water retention and storage. Hydrol Process 25:3836-3842. doi:10.1002/hyp.8281
  7. Heermann D.F. 1996, Irrigation scheduling. In L.S. Pereira, R.A. Feddes, J.R. Gilley, B. Lesaffre, eds, Sustainability of Irrigated Agriculture. Springer, Berlin, Germany, pp 233-249.
  8. Jones H.G. 2004, Irrigation scheduling: advantages and pitfalls of plant-based methods. J Exp Bot 55:2427-2436. doi:10.1093/jxb/erh213
  9. Kang S., M.W. van Iersel, and J. Kim 2019, Plant root growth affects FDR soil moisture sensor calibration. Sci Hortic 252:208-211. doi:10.1016/j.scienta.2019.03.050
  10. Kim J. 2014, Efficient irrigation practice through soil moisture sensor based automated irrigation system in ornamental plant production. Flower Res J 22:48-53. (in Korean) doi:10.11623/frj.2014.22.2.2
  11. Kim J., J.D. Lea-Cox, M.Chappell, and M.W. van Iersel 2014, Wireless sensors networks for optimization of irrigation, production, and profit in ornamental production. Acta Hortic 1037:643-649. doi:10.17660/ActaHortic.2014.1037.82
  12. Lekshmi S.S.U., D.N. Singh, and M.S. Baghini 2014, A critical review of soil moisture measurement. Measurement 54:92-105. doi:10.1016/j.measurement.2014.04.007
  13. Li S. 2012, Application of the internet of things technology in precision agriculture irrigation systems. 2012 Int Conf Comput Sci Serv Syst, pp 1009-1013. doi:10.1109/CSSS.2012.256
  14. METER Group 2018, TEROS 11/12 Manual, Available via http://publications.metergroup.com/Manuals/20587_TEROS11-12_Manual_Web.pdf. Accessed 27 September 2022
  15. Munoz-Carpena R. 2004, Field devices for monitoring soil water content. EDIS:BUL343. doi:10.32473/edis-ae266-2004
  16. Nagahage E.A.A.D., I.S.P. Nagahage, and T. Fujino 2019, Calibration and validation of a low-cost capacitive moisture sensor to integrate the automated soil moisture monitoring system. Agriculture 9:141. doi:10.3390/agriculture9070141
  17. Novak V., and H. Hlavacikova 2019, Soil-water content and its measurement. In Applied Soil Hydrology. Theory and Applications of Transport in Porous Media, vol 32. Springer, Cham, pp 49-61. doi:10.1007/978-3-030-01806-1_5
  18. Pereira L.S. 1999, Higher performance through combined improvements in irrigation methods and scheduling: a discussion. Agric Water Manag 40:153-169. doi:10.1016/S0378-3774(98)00118-8
  19. Ramson S.R.J., W.D. Leon-Salas, Z. Brecheisen, E.J. Foster, C.T. Johnston, D.G. Schulze, T. Filley, R. Rahimi, M.J.C.V. Soto, J.A.L. Bolivar, and M.P. Malaga 2021, A self-powered, real-time, LoRaWAN IoT-based soil health monitoring system. IEEE Internet Things J 8:9278-9293. doi:10.1109/JIOT.2021.3056586
  20. Rhie Y.H., and J. Kim 2017, Changes in physical properties of various coir dust and perlite mixes and their capacitance sensor volumetric water content calibrations. HortScience 52:162-166. doi:10.21273/HORTSCI11362-16
  21. Schindler U., G. von Unold, W. Durner, and L. Mueller 2015, Recent progress in measuring soil hydraulic properties. Proc Int Conf Environ Civil Eng, pp 46-51.
  22. Teixeira W., F. Sinclair, B. Huwe, and G. Schroth 2003, Soil water, In G. Schroth and F.L. Sinclair, eds, Trees, crops and soil fertility: concepts and research methods. CABI Publishing, Wallingford, UK, pp 209-234.
  23. Van Genuchten M.T. 1980, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892-898. doi:10.2136/sssaj1980.03615995004400050002x
  24. Veldkamp E., and J.J. O'Brien 2000, Calibration of a frequency domain reflectometry sensor for humid tropical soils of volcanic origin. Soil Sci Soc Am J 64:1549-1553. doi:10.2136/sssaj2000.6451549x