참고문헌
- Abualnour, M., Houari, M.S.A., Tounsi, A., Bedia, E.A.A. and Mahmoud, S.R. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct., 184(3), 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047.
- Abuteir, B.W., Harkati, E., Boutagouga, D., Mamouri, S. and Djeghaba, K., (2021), "Thermo-mechanical nonlinear transient dynamic and dynamic-buckling analysis of functionally graded material shell structures using an implicit conservative/decaying time integration scheme", Mech. Adv. Mater. Struct., 15(06), 1-14. https://doi.org/10.1080/15376494.2021.1964115.
- Akbas, S.D. (2017), "Vibration and Static Analysis of Functionally Graded Porous Plates", J. Appl. Comput. Mech., 3(03), 199-207. https://doi.org/10.22055/jacm.2017.21540.1107.
- Asadi, E. and Qatu, M.S. (2013), "Free vibration of thick laminated cylindrical shells with different boundary conditions using general differential quadrature", J. Vib. Control, 19(3), 356-366. https://doi.org/10.1177%2F1077546311432000. https://doi.org/10.1177%2F1077546311432000
- Asadi, E., Wang, W. and Qatu, M.S. (2012), "Static and vibration analyses of thick deep laminated cylindrical shells using 3D and various shear deformation theories", Compos. Struct., 94(2), 494-500. https://doi.org/10.1016/j.compstruct.2011.08.011.
- Basaglia, C., Camotim, D. and Silvestre, N. (2019), "GBT-based buckling analysis of steel cylindrical shells under combinations of compression and external pressure", Thin-Walled Struct., 144(5), 106274-11. https://doi.org/10.1016/j.tws.2019.106274.
- Daikh, A.A., Bachiri, A., Houari, M.S.A. and Tounsi, A. (2022), "Size dependent free vibration and buckling of multilayered carbon nanotubes reinforced composite nanoplates in thermal environment", Mech. Based Des. Struct. 50(4), 1371-1399. https://doi.org/10.1080/15397734.2020.1752232.
- Daikh, A.A., Drai, A., Houari, M.S.A. and Eltaher M.A. (2020), "Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes", Steel Compos. Struct., 36(6), 643-656. http://dx.doi.org/10.12989/scs.2020.36.6.643.
- Dey, T. and Ramachandra, L.S. (2014), "Nonlinear stability analysis of laminated composite simply supported circular cylindrical shells subjected to partial axial loading", J. Eng. Mech., 140(8), 04014058-13. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000764.
- Fernandez, F., Lewicki, J.P. and Tortorelli, D.A. (2021), "Optimal toolpath design of additive manufactured composite cylindrical structures", Comput. Methods Appl. Mech. Eng., 376(10), 113673. https://doi.org/10.1016/j.cma.2021.113673.
- Foroutana, K. and Ahmadi, H. (2020), "Simultaneous resonances of SSMFG cylindrical shells resting on viscoelastic foundations", Steel Compos. Struct., 37(1), 51-73. http://dx.doi.org/10.12989/scs.2020.37.1.051.
- Guo, Y., Serhat, G., Perez, M.G. and Knippers, J. (2022), "Maximizing buckling load of elliptical composite cylinders using lamination parameters", Eng. Struct., 262(05), 114342. https://doi.org/10.1016/j.engstruct.2022.114342.
- Hirane, H., Belarbi, MO., Houari, M.S.A. and Tounsi, A. (2021), "On the layerwise finite element formulation for static and free vibration analysis of functionally graded sandwich plates". Eng. Comput., 34(6), 1-29. https://doi.org/10.1007/s00366-020-01250-1.
- Houmat, A. (2021), "Three-dimensional free flexural vibrations of fluid-filled functionally graded circular cylindrical shell with curvilinear radius variation", Compos. Struct., 272(06), 114263. https://doi.org/10.1016/j.compstruct.2021.114263.
- Katariya, P.V. and Panda, S.K. (2020), "Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect", Steel Compos. Struct., 34(2), 279-288. http://dx.doi.org/10.12989/scs.2020.34.2.279.
- Khayat, M., Poorveis, D. and Moradi, S. (2017a), "Semi-analytical approach in buckling analysis of functionally graded shells of revolution subjected to displacement dependent pressure", J. Press. Vessel Technol., 139(6), 061202-21. https://doi.org/10.1115/1.4037042.
- Khayat, M., Poorveis, D. and Moradi, S. (2017b), "Buckling analysis of functionally graded truncated conical shells under external displacement-dependent pressure", Steel Compos. Struct., 23(1), 1-6. http://dx.doi.org/10.12989/scs.2017.23.1.001.
- Khayat, M., Dehghan, S.M., Najafgholipour, M.A. and Baghlani, A. (2018), "Free vibration analysis of functionally graded cylindrical shells with different shell theories using semianalytical method", Steel Compos. Struct, 28(6), 735-748. http://dx.doi.org/10.12989/scs.2018.28.6.735.
- Khayat, M., Poorveis, D. and Moradi, S., (2016a), "Buckling analysis of laminated composite cylindrical shell subjected to lateral displacement-dependent pressure using semi-analytical finite strip method", Steel Compos. Struct., 22(2), 301-321. https://doi.org/10.12989/scs.2016.22.2.301.
- Khayat, M., Poorveis, D., Moradi, S. and Hemmati, M. (2016b), "Buckling of thick deep laminated composite shell of revolution under follower forces", Struct. Eng. Mech., 58(1), 59-91. https://doi.org/10.12989/sem.2016.58.1.059.
- Khalfi, Y., Houari, M.S.A. and Tounsi, A. (2014), "A refined and simple shear deformation theory for thermal buckling of solar functionally graded plates on elastic foundation", Int. J. Comput. Methods, 11(5), 1350077-15. https://doi.org/10.1142/S0219876213500771.
- Khetir, H., Bouiadjra, M.B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates", Struct. Eng. Mech., 64(4), 391-402. http://dx.doi.org/10.12989/sem.2017.64.4.391.
- Kumar, R., Dey, T. and Panda, S.K. (2019), "Instability and vibration analyses of FG cylindrical panels under parabolic axial compressions", Steel Compos. Struct., 31(02), 187-199. https://doi.org/10.12989/scs.2019.31.2.187.
- Lin, H., Cao, D. and Shao, C. (2018), "An admissible function for vibration and flutter studies of FG cylindrical shells with arbitrary edge conditions using characteristic orthogonal polynomials", Compos. Struct., 185(03), 748-763. https://doi.org/10.1016/j.compstruct.2017.11.071.
- Li, Z.M. and Lin, Z.Q. (2010), "Non-linear buckling and postbuckling of shear deformable anisotropic laminated cylindrical shell subjected to varying external pressure loads", Compos. Struct., 92(2), 553-567. https://doi.org/10.1016/j.compstruct.2009.08.048.
- Lopatin, A.V. and Morozov, E.V., (2012), "Buckling of a composite cantilever circular cylindrical shell subjected to uniform external lateral pressure", Compos. Struct., 94(2), 553-562. https://doi.org/10.1016/j.compstruct.2011.08.021.
- Mahawar, P. and Sharma, P. (2022), "Free vibration analysis of FGM conical shell", Proceedings of Advances in Mechanical and Materials Technology, Lecture Notes in Mechanical Engineering. Springer, Singapore, 83-91, https://doi.org/10.1007/978-981-16-2794-1_7.
- Majidi-Mozafari, K., Bahaadini, R. and Saidi, A.R. (2021), "Aeroelastic flutter analysis of functionally graded spinning cylindrical shells reinforced with graphene nanoplatelets in supersonic flow", Mater. Res. Express., 8(11), 115012. https://doi.org/10.1088/2053-1591/ac2ce4.
- Mirfakhraei, P. and Redekop, P. (1998), "Buckling of circular cylindrical shells by the differential quadrature method", Int. J. Press. Vessel. Pip., 75(4), 347-353. https://doi.org/10.1016/S0308-0161(98)00032-5.
- Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020), "Post-buckling of higher-order stiffened metal foam curved shells with porosity distributions and geometrical imperfection", Steel Compos. Struct., 35(4), 567-578. http://dx.doi.org/10.12989/scs.2020.35.4.567.
- Mota, A.F., Loja, M.A.R., Barbosa, J.I. and Rodrigues, J.A. (2020), "Porous Functionally Graded Plates: An Assessment of the Influence of Shear Correction Factor on Static Behavior", Math. Comput. Appl., 25(03), 1-26. https://doi.org/10.3390/mca25020025.
- Na, K., Kim, J. and Park, J. (2019), "Dynamic Stability Analyses of the Liquid-Filled Cylindrical Shells with Lumped Masses Under a Follower Force", Int. J. Aeronaut. Space Sci., 20(1), 664-672. https://doi.org/10.1007/s42405-019-00203-3.
- Nejati, M., Dimitri, R., Tornabene, F. and Hossein Yas, M. (2017), "Thermal buckling of nanocomposite stiffened cylindrical shells reinforced by Functionally Graded Wavy Carbon Nano-Tubes with temperature-dependent properties", Appl. Sci., 7(12), 1-24. https://doi.org/10.3390/app7121223.
- Park, S.H. and Kim, J.H. (2000), "Dynamic stability of a completely free circular cylindrical shell subjected to a follower force", J. Sound Vib., 231(4), 989-1005. https://doi.org/10.1006/jsvi.1999.2319.
- Park, S.H. and Kim, J.H. (2012), "Dynamic stability of a free-free cylindrical shell under a follower force", AIAA J., 38(6), 1070-1077. https://doi.org/10.2514/2.1069.
- Park, S.H. and Kim, J.H. (2002), "Dynamic stability of a stiffedged cylindrical shell subjected to a follower force", Comput. Struct., 80(3), 227-233. https://doi.org/10.1016/S0045-7949(02)00007-X.
- Rouhi, M., Ghayoor, H., Hoa, S.V., Hojjati, M. and Weaver, P.M. (2016), "Stiffness tailoring of elliptical composite cylinders for axial buckling performance", Compos. Struct., 150(4), 115-123. https://doi.org/10.1016/j.compstruct.2016.05.007.
- Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Methods Eng., 47(1-3), 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3.
- Sahan, M.F. (2015), "Transient analysis of cross-ply laminated shells using FSDT: Alternative formulation", Steel Compos. Struct., 18(4), 889-907. http://dx.doi.org/10.12989/scs.2015.18.4.889.
- Sayyad, A.S. and Ghugal, Y.M. (2021), "Static and free vibration analysis of doubly-curved functionally graded material shells", Compos. Struct., 269(02), 114045. https://doi.org/10.1016/j.compstruct.2021.114045.
- Shahali, P., Haddadpour, H. and Shakhesi, S. (2022), "Dynamic analysis of electrorheological fluid sandwich cylindrical shells with functionally graded face sheets using a semi-analytical approach", Compos. Struct., 295(03), 115715. https://doi.org/10.1016/j.compstruct.2022.115715.
- Shamass, R., Alfano, G. and Guarracino, F. (2015), "An Analytical Insight into the Buckling Paradox for Circular Cylindrical Shells under Axial and Lateral Loading", Math. Probl. Eng., 2015(1), 1-10. https://doi.org/10.1155/2015/514267.
- Sheng, G.G. and Wang, X. (2018), "The dynamic stability and nonlinear vibration analysis of stiffened functionally graded cylindrical shells", Appl. Math. Model., 56(04), 389-403. https://doi.org/10.1016/j.apm.2017.12.021.
- Silvestre, N. (2008), "Buckling behaviour of elliptical cylindrical shells and tubes under compression", Int. J. Solids Struct., 45(16), 4427-4447. https://doi.org/10.1016/j.ijsolstr.2008.03.019.
- Silvestre, N. and Gardner, L. (2011), "Elastic local post-buckling of elliptical tubes", J. Constr. Steel Res., 67(3), 281-292. https://doi.org/10.1016/j.jcsr.2010.11.004.
- Sofiyev, A.H., Tornabene, F., Dimitri, F. and Kuruoglu, N. (2020), "Buckling behavior of FG-CNT reinforced composite conical shells subjected to a combined loading", Nanomaterials, 10(3), 1-19. https://doi.org/10.3390/nano10030419.
- Sofiyev, A.H. and Kuruoglu, N. (2016), "Domains of dynamic instability of FGM conical shells under time dependent periodic loads", Compos. Struct., 136(05), 139-148. https://doi.org/10.1016/j.compstruct.2015.09.060.
- Sofiyev, A.H. and Kuruoglu, N. (2015), "Parametric instability of shear deformable sandwich cylindrical shells containing an FGM core under static and time dependent periodic axial loads", Int. J. Mech. Sci., 102(07), 114-123. https://doi.org/10.1016/j.ijmecsci.2015.07.025.
- Sofiyev, A.H. (2016), "Parametric vibration of FGM conical shells under periodic lateral pressure within the shear deformation theory", Compos. B. Eng., 89(02), 282-294. https://doi.org/10.1016/j.compositesb.2015.11.017.
- Soldatos, K.P. (2008), "Nonlinear analysis of transverse shear deformable laminated composite cylindrical shells-part II: buckling of axially compressed cross-ply circular and oval cylinders", J. Press. Vessel Technol., 114(1), 110-114. https://doi.org/10.1115/1.2929000.
- Torki, M.E., Taghi Kazemi, M. and Talaeitaba, S.B. (2015), "Effect of axial deformation on flutter of cantilevered FGM cylindrical shells under axial follower forces", Transaction A: Civil Eng., 13(2), 160-170. http://dx.doi.org/10.22068/IJCE.13.2.160.
- Torki, M.E., Kazemi, M.E., Reddy, J.N., Haddadpoud, H. and Mohmoudkhani, S. (2014), "Dynamic stability of functionally graded cantilever cylindrical shells under distributed axial follower forces", J. Sound Vib., 333(3), 801-817. https://doi.org/10.1016/j.jsv.2013.09.005.
- Tornabene, F., Viola, E. and Inman, D.J. (2009), "2-D Differential Quadrature solution for vibration analysis of functionally graded conical, cylindrical shell and annular plate structures", J. Sound Vib., 328(3), 259-290. https://doi.org/10.1016/j.jsv.2009.07.031.
- Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2014), "Free vibrations of free-form doubly-curved shells made of functionally graded materials using higher-order equivalent single layer theories", Compos. B Eng., 67(1), 490-509. https://doi.org/10.1016/j.compositesb.2014.08.012.
- Tzeng Y.C. and Chern, Y.C., (2008), "Stability Analysis of a Circular Cylindrical Shell by the Equilibrium Method", Int. J. Struct. Stab. Dyn., 8(3), 465-485. https://doi.org/10.1142/S0219455408002752.
- Van Dung, D. and Hoa, L.K. (2013), "Nonlinear buckling and post-buckling analysis of eccentrically stiffened functionally graded circular cylindrical shells under external pressure", ThinWalled Struct., 63(4), 117-124. https://doi.org/10.1016/j.tws.2012.09.010.
- Xie, K. and Chen, M. (2021), "An analytical method for free vibrations of functionally graded cylindrical shells with arbitrary intermediate ring supports", J. Braz. Soc. Mech. Sci. Eng., 43(05), 1-13. https://doi.org/10.1007/s40430-021-02829-5.
- Xue, J. and Hoo Fatt, M.S. (2002), "Buckling of a non-uniform, long cylindrical shell subjected to external hydrostatic pressure", Eng. Struct., 24(8), 1027-1034. https://doi.org/10.1016/S0141-0296(02)00029-9.
- Yahia, S.A., Atmane, H.A., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories" Struct. Eng. Mech., 53(6), 1143-1165. http://dx.doi.org/10.12989/sem.2015.53.6.1143.
- Yao, Y.C. and Jenkins, W.C. (1970), "Buckling of elliptic cylinders under normal pressure", AIAA J., 8(1), 22-27. https://doi.org/10.2514/3.5600.
- Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. http://dx.doi.org/10.12989/sem.2015.54.4.693.
- Zheng, Y., Han, B., Chen, J., Zhong, J. and Li, J. (2021), "Maximizing the load carrying capacity of a variable stiffness composite cylinder based on the multi-objective optimization method", Int. J. Comput. Methods, 18(05), 2150001. https://doi.org/10.1142/S0219876221500018.
- Zucco, G. and Weaver, P.M. (2020), "Post-buckling behaviour in variable stiffness cylindrical panels under compression loading with modal interaction effects", Int. J. Solids Struct., 203(06), 92-109. https://doi.org/10.1016/j.ijsolstr.2020.06.025.