DOI QR코드

DOI QR Code

Prospecting endophytic colonization in Waltheria indica for biosynthesis of silver nanoparticles and its antimicrobial activity

  • Nirmala, C. (Department of Biotechnology, Vinayaka Mission's Kirupananda Variyar Engineering College, Vinayaka Mission's Research Foundation (Deemed to be University)) ;
  • Sridevi, M. (Department of Biotechnology, Vinayaka Mission's Kirupananda Variyar Engineering College, Vinayaka Mission's Research Foundation (Deemed to be University))
  • Received : 2020.10.04
  • Accepted : 2022.07.29
  • Published : 2022.10.25

Abstract

Endophytes ascertain a symbiotic relationship with plants as promoters of growth, defense mechanism etc. This study is a first report to screen the endophytic population in Waltheria indica, a tropical medicinal plant. 5 bacterial and 3 fungal strains in leaves, 3 bacterial and 1 yeast species in stems were differentiated morphologically and identified by biochemical and molecular methods. The phylogenetic tree of the isolated endophytes was constructed using MEGA X. Silver nanoparticles were biosynthesized from a rare endophytic bacterium Cupriavidus metallidurans isolated from the leaf of W. indica. The formation of silver nanoparticles was confirmed by UV-Visible spectrophotometer that evidenced a strong absorption band at 408.5 nm of UV-Visible range with crystalline nature and average particle size of 16.4 nm by Particle size analyzer. The Fourier Transform Infra-Red spectrum displayed the presence of various functional groups that stabilized the nanoparticles. X-ray diffraction peaks were conferred to face centered cubic structure. Transmission Electron Microscope and Scanning Electron Microscope revealed the spherical-shaped, polycrystalline nature with the presence of elemental silver analyzed by Energy Dispersive of X-Ray spectrum. Selected area electron diffraction also confirmed the orientation of AgNPs at 111, 200, 220, 311 planes similar to X-ray diffraction analysis. The synthesized nanoparticles are evaluated for antimicrobial activity against 7 bacterial and 3 fungal pathogens. A good zone of inhibition was observed against pathogenic bacteria than fungal pathogens. Thus the study could hold a key aspect in drug discovery research and other pharmacological conducts of human clinical conditions.

Keywords

Acknowledgement

The authors gratefully acknowledge Department of Biotechnology, Vinayaka Mission's Kirupananda Variyar Engineering College, Salem and Acme ProGen Biotech (India) Private Limited, Salem for providing the essential facilities to carry out the research.

References

  1. Abrahamson, J.T., Sempere, B., Walsh, M.P., Forman, J.M., Sen, F., Sen, S., Mahajan, S.G., Paulus, G.L., Wang, Q.H., Choi, W. and Strano, M.S. (2013), "Excess thermopower and the theory of thermopower waves", Acs Nano, 7(8), 6533-6544. https://doi.org/10.1021/nn402411k.
  2. Afzal, I., Shinwari, Z.K., Sikandar, S. and Shahzad, S. (2019), "Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants", Microbiol. Res., 221, 36-49. https://doi.org/10.1016/j.micres.2019.02.001.
  3. Ali, Z. A., Yahya, R., Sekaran, S. D. and Puteh, R. (2016), "Green synthesis of silver nanoparticles using apple extract and its antibacterial properties", Adv. Mater. Sci. Eng., 410219. https://doi.org/10.1155/2016/4102196.
  4. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990), "Basic local alignment search tool", J. Mol. Biol., 215(3), 403-10. https://doi.org/10.1016/S0022-2836(05)80360-2.
  5. Amatuzzi, R.F., Cardoso, N., Poltronieri, A.S., Poitevin, C.G., Dalzoto, P., Zawadeneak, M.A., Pimentel, I.C. (2018), "Potential of endophytic fungi as biocontrol agents of Duponchelia fovealis (Zeller) (Lepidoptera: Crambidae)", Brazil. J. Biol., 78(3), 429-35. https://doi.org/10.1590/1519-6984.166681.
  6. Ameen, F., AlYahya, S., Govarthanan, M., ALjahdali, N., AlEnazi, N., Alsamhary, K., Alshehri, W.A., Alwakeel, S.S. and Alharbi, S.A. (2020), "Soil bacteria Cupriavidus sp. mediates the extracellular synthesis of antibacterial silver nanoparticles", J. Mol. Struct., 1202, 127233. https://doi.org/10.1016/j.molstruc.2019.127233.
  7. Anandalakshmi, K., Venugobal, J. and Ramasamy, V. (2016), "Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity", Appl. Nanosci., 6(3), 399-408. https://doi.org/10.1007/s13204-015-0449-z.
  8. Andam, C.P., Mondo, S.J. and Parker, M.A. (2007), "Monophyly of nodA and nifH genes across Texan and Costa Rican populations of Cupriavidus nodule symbionts", Appl. Environ. Microbiol., 73(14), 4686-90. https://doi.org/10.1128/AEM.00160-07.
  9. Arora, N.K., Khare, E. and Maheshwari, D.K. (2010), "Plant growth promoting rhizobacteria: Constraints in bioformulation, commercialization, and future strategies", InPlant Growth Health Promot. Bacteria, 97-116. https://doi.org/10.1007/978-3-642-13612-2_5.
  10. Banerjee, P. and Nath, D. (2015), "A phytochemical approach to synthesize silver nanoparticles for non-toxic biomedical application and study on their antibacterial efficacy", Nanosci. Technol, 2(1), 1-4.
  11. Barnett, H.L. and Hunter, B.B. (1998), Illustrated genera of imperfect fungi, APS Press.
  12. Barrett, C.F. and Parker, M.A. (2006), "Coexistence of Burkholderia, Cupriavidus, and Rhizobium sp. nodule bacteria on two Mimosa spp. in Costa Rica", Appl. Environ. Microbiol., 72(2), 1198-206. https://doi.org/10.1128/AEM.72.2.1198-1206.2006.
  13. Bilal, S., Khan, A.L., Shahzad, R., Asaf, S., Kang, S.M. and Lee, I.J. (2017), "Endophytic Paecilomyces formosus LHL10 augments Glycine max L. adaptation to Ni-contamination through affecting endogenous phytohormones and oxidative stress", Front. Plant Sci., 8, 870. https://doi.org/10.3389/fpls.2017.00870.
  14. Buchanan, R.E. and Gibbons, N.E. (1975), Bergey's Manual of Determinative Bacteriology, Williams & Wilkins.
  15. Chockalingam, N. and Muruhan, S. (2017), "Anti-inflammatory properties of rosmarinic acid- a review", Int. J. Res. Pharmaceut. Sci., 8(4), 656-62.
  16. Correll, J.C., Klittich, C.J. and Leslie, J.F. (1987), "Nitrate nonutilizing mutants of Fusarium oxysporum and their use in vegetative compatibility tests", Phytopathology, 77(12), 1640-6. https://doi.org/10.1094/Phyto-77-1640
  17. Cullity, B.D. (1978), Elements of X-ray diffraction, Addison-Wesley.
  18. Deepak, P., Amutha, V., Kamaraj, C., Balasubramani, G., Aiswarya, D. and Perumal, P. (2019), Chemical and green synthesis of nanoparticles and their efficacy on cancer cells, In Green Synthesis, Characterization and Applications of Nanoparticles, 369-387, Elsevier. https://doi.org/10.1016/B978-0-08-102579-6.00016-2.
  19. Deng, S.K., Ye, X.M., Chu, C.W., Jiang, J., He, J., Zhang, J. and Li, S.P. (2014), "Chryseomicrobium aureum sp. nov., a bacterium isolated from activated sludge", Int. J. Syst. Evol. Microbiol., 64(8), 2682-2687. https://doi.org/10.1099/ijs.0.061143-0.
  20. Devaraj, P., Kumari, P., Aarti, C. and Renganathan, A. (2013), "Synthesis and characterization of silver nanoparticles using cannonball leaves and their cytotoxic activity against MCF-7 cell line", J. Nanotechnol., 598328. https://doi.org/10.1155/2013/598328.
  21. Devi, L.S. and Joshi, S.R. (2015), "Ultrastructures of silver nanoparticles biosynthesized using endophytic fungi", J. Microscop. Ultrastruct., 3(1), 29-37. https://doi.org/10.1016/j.jmau.2014.10.004.
  22. Diantoro, M., Suprayogi, T., Sa'adah, U., Mufti, N., Fuad, A., Hidayat, A. and Nur, H. (2018), Modification of Electrical Properties of Silver Nanoparticle, in Silver Nanoparticles: Fabrication, Characterization and Applications, 233. https://doi.org/10.5772/intechopen.75682.
  23. Dong, Z.Y., Narsing Rao, M.P., Xiao, M., Wang, H.F., Hozzein, W.N., Chen, W. and Li, W.J. (2017), "Antibacterial activity of silver nanoparticles against Staphylococcus warneri synthesized using endophytic bacteria by photo-irradiation", Front. Microbiol., 8, 1090. https://doi.org/10.3389/fmicb.2017.01090.
  24. Felsenstein, J. (1985), "Confidence limits on phylogenies: an approach using the bootstrap", Evolution, 39(4), 783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x.
  25. Frank, J.A., Reich, C.I., Sharma, S., Weisbaum, J.S., Wilson, B.A. and Olsen, G.J. (2008), "Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes", Appl. Environ. Microbiol., 74(8), 2461-2470. https://doi.org/10.1128/AEM.02272-07.
  26. Gai, C.S., Lacava, P.T., Maccheroni Jr, W., Glienke, C., Araujo, W.L., Miller, T.A. and Azevedo, J.L. (2009), "Diversity of endophytic yeasts from sweet orange and their localization by scanning electron microscopy", J. Basic Microbiol., 49(5), 441-451. https://doi.org/10.1002/jobm.200800328.
  27. Ghosh, S., Patil, S., Ahire, M., Kitture, R., Kale, S., Pardesi, K., Cameotra, S.S., Bellare, J., Dhavale, D.D., Jabgunde, A. and Chopade, B.A. (2012), "Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents", Int. J. Nanomed., 7, 483. https://doi.org/10.2147/IJN.S24793.
  28. Gnanadesigan, M., Anand, M., Ravikumar, S., Maruthupandy, M., Vijayakumar, V., Selvam, S., Dhineshkumar, M. and Kumaraguru, A.K. (2011), "Biosynthesis of silver nanoparticles by using mangrove plant extract and their potential mosquito larvicidal property", Asia. Pac. J. Tropical Med., 4(10), 799-803. https://doi.org/10.1016/S1995-7645(11)60197-1.
  29. Goksu, H., C elik, B., Yildiz, Y., Sen, F. and Kilbas, B. (2016), "Superior monodisperse CNT-supported CoPd (CoPd@ CNT) nanoparticles for selective reduction of nitro compounds to primary amines with NaBH4 in aqueous medium", Chem. Select, 1(10), 2366-2372. https://doi.org/10.1002/slct.201600509.
  30. Goksu, H., Sert, H., Kilbas, B. and Sen, F. (2017), "Recent advances in the reduction of nitro compounds by heterogenous catalysts", Curr. Org. Chem., 21(9), 794-820. https://doi.org/10.2174/1385272820666160525123907
  31. Gond, S.K., Bergen, M.S., Torres, M.S., White Jr, J.F. (2015), "Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize", Microbiol. Res., 172, 79-87. https://doi.org/10.1016/j.micres.2014.11.004.
  32. Iqbal, P., Preece, J.A. and Mendes, P.M. (2012), Nanotechnology: The "Top-Down" and "Bottom-Up" Approaches, in Supramolecular Chemistry: From Molecules to Nanomaterials, John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470661345.smc195.
  33. Kannan, M., Kumar, T.S. and Rao, M.V. (2016), "Antidiabetic and antioxidant properties of Waltheria indica L., an ethnomedicinal plant", Int. J. Pharma. Res. Health Sci, 4(5), 1376-84. https://doi.org/10.21276/ijprhs.2016.05.07.
  34. Kavamura, V.N., Santos, S.N., da Silva, J.L., Parma, M.M., A vila, L.A., Visconti, A., Zucchi, T.D., Taketani, R.G. andreote, F.D., de Melo, I.S. (2013), "Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought", Microbiol. Res., 168(4), 183-91. https://doi.org/10.1016/j.micres.2012.12.002.
  35. Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. (2018), "MEGA X: molecular evolutionary genetics analysis across computing platforms", Mol. Biol. Evol., 35(6), 1547-1549. https://doi.org/10.1093/molbev/msy096.
  36. Levard, C., Hotze, E.M., Lowry, G.V. and Brown Jr, G.E. (2012), "Environmental transformations of silver nanoparticles: impact on stability and toxicity", Environ. Sci. Technol., 46(13), 6900-6914. https://doi.org/10.1021/es2037405.
  37. Mariadoss, A.V.A., Ramachandran, V., Shalini, V., Agilan, B., Franklin, J.H., Sanjay, K., Alaa, Y.G., Tawfiq, M.A.A. and Ernest, D. (2019), "Green synthesis, characterization and antibacterial activity of silver nanoparticles by Malus domestica and its cytotoxic effect on (MCF-7) cell line", Microbial Pathogenesis., 135, 103609. https://doi.org/10.1016/j.micpath.2019.103609.
  38. Martin, K.J. and Rygiewicz, P.T. (2005), "Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts", BMC Microbiol., 5(1), 1-1. https://doi.org/10.1186/1471-2180-5-28.
  39. Mie, R., Samsudin, M.W., Din, L.B., Ahmad, A., Ibrahim, N. and Adnan, S.N.A. (2014), "Synthesis of silver nanoparticles with antibacterial activity using the lichen Parmotrema praesorediosum", Int. J. Nanomed., 9, 121. https://doi.org/10.2147/IJN.S52306.
  40. Monowar, T., Rahman, M., Bhore, S.J., Raju, G. and Sathasivam, K.V. (2018), "Silver nanoparticles synthesized by using the endophytic bacterium Pantoea ananatis are promising antimicrobial agents against multidrug resistant bacteria", Molecules, 23(12), 3220. https://doi.org/10.3390/molecules23123220.
  41. Monteillier, A., Cretton, S., Ciclet, O., Marcourt, L., Ebrahimi, S.N., Christen, P. and Cuendet, M. (2017), "Cancer chemopreventive activity of compounds isolated from Waltheria indica", J. Ethnopharmacol., 203, 214-25. https://doi.org/10.1016/j.jep.2017.03.048.
  42. Montero-Silva, F., Duran, N. and Seeger, M. (2018), "Synthesis of extracellular gold nanoparticles using Cupriavidus metallidurans CH34 cells", IET Nanobiotechnol., 12(1), 40-46. https://doi.org/10.1049/iet-nbt.2017.0185.
  43. Nair, D.N. and Padmavathy, S. (2014), "Impact of endophytic microorganisms on plants, environment and humans", Sci. World J., 250693. https://doi.org/10.1155/2014/250693.
  44. Neetha, J.N., Ujwal, P., Sandesh, K., Santhosh, H. and Girish, K. (2018), "Aerobic biodegradation of Acid Blue-9 dye by Bacillus fermus Isolated from Annona reticulate", Environ. Technol. Innov., 11, 253-261. https://doi.org/10.1016/j.eti.2018.06.007.
  45. Nirmala, C. and Sridevi, M. (2021), "Characterization, antimicrobial and antioxidant evaluation of biofabricated silver nanoparticles from Endophytic Pantoea anthophila", J. Inorg. Organomet. Polym. Mater., 31(9), 3711-3725. https://doi.org/10.1007/s10904-021-01974-7.
  46. Nirmala, C., Sridevi, M. (2021), "Ethnobotanical, phytochemistry, and pharmacological property of Waltheria Indica Linn", Future J. Pharm. Sci., 7, 14. https://doi.org/10.1186/s43094-020-00174-3.
  47. Pindi, P.K., Ashwitha, K. and Rani, A.S. (2016), "Chryseomicrobium palamuruense sp. nov., a haloalkalitolerant bacterium isolated from a sediment sample", Int. J. Syst. Evol. Microbiol., 66(9), 3731-3736. https://doi.org/10.1099/ijsem.0.001256.
  48. Qian, Y., Yu, H., He, D., Yang, H., Wang, W., Wan, X. and Wang, L. (2013), "Biosynthesis of silver nanoparticles by the endophytic fungus Epicoccum nigrum and their activity against pathogenic fungi", Bioproc. Biosyst. Eng., 36(11), 1613-1619. https://doi.org/10.1007/s00449-013-0937-z.
  49. Qin, S., Li, J., Chen, H.H., Zhao, G.Z., Zhu, W.Y., Jiang, C.L., Xu, L.H. and Li, W.J. (2009), "Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China", Appl. Environ. Microbiol., 75(19), 6176-6186. https://doi.org/10.1128/AEM.01034-09.
  50. Rahman, S., Rahman, L., Khalil, A.T., Ali, N., Zia, D., Ali, M. and Shinwari, Z.K. (2019), "Endophyte-mediated synthesis of silver nanoparticles and their biological applications", Appl. Microbiol. Biotechnol., 103(6), 2551-2569. https://doi.org/10.1007/s00253-019-09661-x.
  51. Raj, P.S., Sasikala, C., Ramaprasad, E.V.V., Subhash, Y., Busse, H.J., Schumann, P. and Ramana, C.V. (2013), "Chryseomicrobium amylolyticum sp. nov., isolated from a semi-arid tropical soil, and emended descriptions of the genus Chryseomicrobium and Chryseomicrobium imtechense", Int. J Syst. Evol. Microbiol, 63, 2612-2617. https://doi.org/10.1099/ijs.0.044552-0.
  52. Riddick, T.M. (1968), "Control of colloid stability through zeta potential: With a closing chapter on its relationship to cardiovascular disease", Zeta-Meter, inc., 541.3453.
  53. Roseline, T.A., Murugan, M., Sudhakar, M.P. and Arunkumar, K. (2019), "Nanopesticidal potential of silver nanocomposites synthesized from the aqueous extracts of red seaweeds", Environ. Technol. Innov., 13, 82-93. https://doi.org/10.1016/j.eti.2018.10.005.
  54. Sahu, S., Prakash, A. and Shende, K. (2019), Talaromyces trachyspermus, an endophyte from Withania somnifera with plant growth promoting attributes, Environ. Sust., 2(1), 13-21. https://doi.org/10.1007/s42398-019-00045-5.
  55. Saitou, N. and Nei, M. (1987), "The neighbor-joining method: a new method for reconstructing phylogenetic trees", Mol. Biol. Evol., 4(4), 406-25. https://doi.org/10.1093/oxfordjournals.molbev.a040454.
  56. Saravanakumar, K., Sriram, B., Sathiyaseelan, A., Hu, X., Mariadoss, A.V.A., MubarakAli, D. and Wang, M.H., (2021), "Molecular identification, volatile metabolites profiling, and bioactivities of an indigenous endophytic fungus (Diaporthe sp.)", Proc. Biochem., 102, 72-81. https://doi.org/10.1016/j.procbio.2020.12.002.
  57. Selvarani, S. (2015), "Anti-cancer activity of silver nanoparticle synthesized from stem extract of Ocimum Kilimandscharicum Against Hep-G2, liver cancer cell line", J. Nanotech. Nanosci., 1, 100103.
  58. Sen, B., Savk, A. and Sen, F. (2018), "Highly efficient monodisperse Pt nanoparticles confined in the carbon black hybrid material for hydrogen liberation", J. Colloid Interf. Sci., 520, 112-118. https://doi.org/10.1016/j.jcis.2018.03.004.
  59. Silva-Hughes, A.F., Wedge, D.E., Cantrell, C.L., Carvalho, C.R., Pan, Z., Moraes, R.M., Madoxx, V.L. and Rosa, L.H. (2015), "Diversity and antifungal activity of the endophytic fungi associated with the native medicinal cactus Opuntia humifusa (Cactaceae) from the United States", Microbiol. Res., 175, 67-77. https://doi.org/10.1002/jobm.200800328.
  60. Singh, D., Rathod, V., Ninganagouda, S., Hiremath, J., Singh, A.K. and Mathew, J. (2014), "Optimization and characterization of silver nanoparticle by endophytic fungi Penicillium sp. isolated from Curcuma longa (turmeric) and application studies against MDR E. coli and S. aureus", Bioinorg. Chem. Appl., 408021. https://doi.org/10.1155/2014/408021.
  61. Singh, T., Jyoti, K., Patnaik, A., Singh, A., Chauhan, R. and Chandel, S.S. (2017), "Biosynthesis, characterization and antibacterial activity of silver nanoparticles using an endophytic fungal supernatant of Raphanus sativus", J. Gen. Eng. Biotechnol., 15(1), 31-39. https://doi.org/10.1016/j.jgeb.2017.04.005.
  62. Sunkar, S. and Nachiyar, C.V. (2012), "Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus", Asia. Pac. J. Tropical Biomed., 2(12), 953-959. https://doi.org/10.1016/S2221-1691(13)60006-4.
  63. Tamura, K., Nei, M. and Kumar, S. (2004), "Prospects for inferring very large phylogenies by using the neighbor-joining method", Proceedings of the National Academy of Sciences, 101(30), 11030-5. https://doi.org/10.1073/pnas.0404206101
  64. Vicentin, R.P., Santos, J.V., Labory, C.R., Costa, A.M., Moreira, F.M. and Alves, E. (2018), "Tolerance to and accumulation of Cadmium, Copper, and Zinc by Cupriavidus necator", Revista Brasileira de Ciencia do Solo, 42. https://doi.org/10.1590/18069657rbcs20170080.
  65. Wang, M., Li, H., Li, Y., Mo, F., Li, Z., Chai, R. and Wang, H. (2020), "Dispersibility and size control of silver nanoparticles with anti-algal potential based on coupling effects of polyvinylpyrrolidone and sodium tripolyphosphate", Nanomaterials, 10(6), 1042. https://doi.org/10.3390/nano10061042.
  66. White, T.J., Bruns, T., Lee, S.J. and Taylor, J. (1990), "Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics", PCR Protocols: A Guide to Methods and Applications, 18(1), 315-22.
  67. Yildiz, Y., Okyay, T.O., Sen, B., Gezer, B., Kuzu, S., Savk, A., Demir, E., Dasdelen, Z., Sert, H. and Sen, F. (2017), "Highly monodisperse Pt/Rh nanoparticles confined in the graphene oxide for highly efficient and reusable sorbents for methylene blue removal from aqueous solutions", Chem. Select, 2(2), 697-701. https://doi.org/10.1002/slct.201601608.
  68. Zailani, A.H., Jada, S.M. and Wurochekke, U.A. (2010), "Antimicrobial activity of Waltheria indica", J. Am. Sci., 6(12), 1591-1594.
  69. Zhang, H.W., Song, Y.C. and Tan, R.X. (2006), "Biology and chemistry of endophytes", Nat. Prod. Rep., 23(5), 753-771. https://doi.org/10.1039/B609472B.
  70. Zongo, F., Ribuot, C., Boumendjel, A. and Guissou, I. (2013), "Botany, traditional uses, phytochemistry and pharmacology of Waltheria indica L. (syn. Waltheria americana): A review", J. Ethnopharmacol., 148(1), 14-26. https://doi.org/10.1016/j.jep.2013.03.080.