DOI QR코드

DOI QR Code

Effect of nano-Nb2O5 on the microstructure and mechanical properties of AZ31 alloy matrix nanocomposites

  • Huang, Song-Jeng (Department of Mechanical Engineering, National Taiwan University of Science and Technology) ;
  • Kannaiyan, Sathiyalingam (Department of Mechanical Engineering, National Taiwan University of Science and Technology) ;
  • Subramani, Murugan (Department of Mechanical Engineering, National Taiwan University of Science and Technology)
  • Received : 2021.10.20
  • Accepted : 2022.08.27
  • Published : 2022.10.25

Abstract

In this study, the gravitating mechanical stir casting method was used to fabricating the Nb2O5/AZ31 magnesium matrix nanocomposites. Niobium pentoxide (Nb2O5) used as reinforcement with two different weight percentages (3 wt % and 6 wt %). The influence of Nb2O5 on microstructure and mechanical properties has been investigated. The microstructure analysis showed that the composites are mainly composed of the primary α-magnesium phase and phase β-Mg17Al12 secondary phase. The secondary phase was dispersed evenly along the grain boundary of the Mg phase. The Nb2O5/AZ31 nanocomposites revealed that the grain size and its lamellar shape (β-Mg17Al12) were gradually refined. Different strengthening mechanisms were assessed in terms of their contributions. Results showed that composite material properties of hardness, yield strength, and fracture study were directly related to Nb2O5 as a reinforcement. The maximum values of the mechanical properties were achieved with the addition of 3 wt% Nb2O5 on the AZ31 alloy.

Keywords

Acknowledgement

The authors would like to thank the Ministry of Science and Technology, Taiwan (MOST 109-2224-E-011-002-) for providing financial support.

References

  1. Abbas, A. and Huang, S.J. (2020a), "Qualitative and quantitative investigation of As-Cast and aged CNT/AZ31 metal matrix composites," J. Miner. Metals Mater. Soc., 72(6), 2272-2282. https://doi.org/10.1007/s11837-020-04114-7.
  2. Abbas, A. and Huang, S.J. (2020b), "Investigation of severe plastic deformation effects on microstructure and mechanical properties of WS2/AZ91 magnesium metal matrix composites," Mater. Sci. Eng. A, 780(January), 139211. https://doi.org/10.1016/j.msea.2020.139211.
  3. Abbas, A. and Huang, S.J. (2021), "Investigating the hall-petch constants for as-cast and aged az61/cnts metal matrix composites and their role on superposition law exponent," J. Compos. Sci., 5(4). https://doi.org/10.3390/jcs5040103.
  4. Alaneme, K.K., Adu, O.P., Oke, S.R., Falodun, O.E. and Olubambi, P.A. (2020a), "Densification characteristics, microstructure and wear behaviour of spark plasma sintering processed titanium-niobium pentoxide (Ti-Nb2O5) based composites", J. King Saud Univ. Eng. Sci., https://doi.org/10.1016/j.jksues.2020.10.005.
  5. Alaneme, K.K., Fatokun, A.A., Oke, S.R. and Olubambi, P.A. (2020b), "Nanoindentation studies and analysis of the mechanical properties of Ti-Nb2O5 based composites", Manuf. Rev., 7. https://doi.org/10.1051/mfreview/2020017.
  6. Ali Ghorbanpour Arani, A.F. and M.M. (2021), "The effect of nanoparticles on enhancement of the specific mechanical properties of the composite structures: A review research", Adv. Nano Res., 10(4), 327-337. https://doi.org/https://doi.org/10.12989/anr.2021.10.4.327.
  7. Bains, P.S., Sidhu, S.S. and Payal, H.S. (2016), "Fabrication and machining of metal matrix composites: A review", Mater. Manuf. Proc., 31(5), 553-573. https://doi.org/10.1080/10426914.2015.1025976.
  8. Banerjee, S., Poria, S., Sutradhar, G. and Sahoo, P. (2019), "Dry sliding tribological behavior of AZ31-WC nano-composites", J. Magnesium Alloys, 7(2), 315-327. https://doi.org/10.1016/j.jma.2018.11.005.
  9. Borodianskiy, K. and Zinigrad, M. (2015), "mechanical properties and microstructure characterization of Al-Si cast alloys formation using carbide nanoparticles", J. Mater. Sci. Appl., 1(3), 85-90.
  10. Chen, L.Y., Xu, J.Q., Choi, H., Pozuelo, M., Ma, X., Bhowmick, S., Yang, J.M., Mathaudhu, S. and Li, X.C. (2015), "Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles", Nature, 528(7583), 539-543. https://doi.org/10.1038/nature16445.
  11. Da Silva, A.L., Hotza, D. and Castro, R.H.R. (2017), "Surface energy effects on the stability of anatase and rutile nanocrystals: A predictive diagram for Nb2O5 -doped-TiO2", Appl. Surf. Sci., 393, 103-109. https://doi.org/10.1016/j.apsusc.2016.09.126.
  12. Dey, A. and Pandey, K.M. (2015), "Magnesium metal matrix composites-a review", Rev. Adv. Mater. Sci., 42(1), 58-67.
  13. Dinaharan, I., Vettivel, S.C., Balakrishnan, M. and Akinlabi, E.T. (2019), "Influence of processing route on microstructure and wear resistance of fly ash reinforced AZ31 magnesium matrix composites", J. Magnesium Alloys, 7(1), 155-165. https://doi.org/10.1016/j.jma.2019.01.003.
  14. Dinaharan, I., Zhang, S., Chen, G. and Shi, Q. (2020), "Titanium particulate reinforced AZ31 magnesium matrix composites with improved ductility prepared using friction stir processing", Mater. Sci. Eng. A, 772, 138793. https://doi.org/10.1016/j.msea.2019.138793.
  15. Flaminio, R., Franc, J., Michel, C., Morgado, N., Pinard, L. and Sassolas, B. (2010), "A study of coating mechanical and optical losses in view of reducing mirror thermal noise in gravitational wave detectors", Classical Quantum Gravity, 27(8). https://doi.org/10.1088/0264-9381/27/8/084030.
  16. Hassan, S.F. and Gupta, M. (2006), "Effect of type of primary processing on the microstructure, CTE and mechanical properties of magnesium/alumina nanocomposites", Compos. Struct., 72(1), 19-26. https://doi.org/10.1016/j.compstruct.2004.10.008.
  17. Hou, Y. N., Yang, K. M., Song, J., Wang, H., Liu, Y. and Fan, T. X. (2021), "A crystal plasticity model for metal matrix composites considering thermal mismatch stress induced dislocations and twins", Sci. Rep., 11(1), 1-13. https://doi.org/10.1038/s41598-021-95439-z.
  18. Huang, S.J., Subramani, M. and Chiang, C.C. (2021), "Effect of hybrid reinforcement on microstructure and mechanical properties of AZ61 magnesium alloy processed by stir casting method", Compos. Commun., 25, 100772. https://doi.org/10.1016/j.coco.2021.100772.
  19. Huang, S.J. and Abbas, A. (2020), "Effects of tungsten disulfide on microstructure and mechanical properties of AZ91 magnesium alloy manufactured by stir casting", J. Alloys Compd., 817, 153321. https://doi.org/10.1016/j.jallcom.2019.153321.
  20. Huang, S.J. and Ali, A.N. (2018), "Effects of heat treatment on the microstructure and microplastic deformation behavior of SiC particles reinforced AZ61 magnesium metal matrix composite", Mater. Sci. Eng. A, 711, 670-682. https://doi.org/10.1016/j.msea.2017.11.020.
  21. Idrisi, A.H. and Mourad, A.H.I. (2019), "Conventional stir casting versus ultrasonic assisted stir casting process: Mechanical and physical characteristics of AMCs", J. Alloys Compd., 805, 502-508. https://doi.org/10.1016/j.jallcom.2019.07.076.
  22. Khandelwal, A., Mani, K., Srivastava, N., Gupta, R. and Chaudhari, G.P. (2017), "Mechanical behavior of AZ31/Al2O3 magnesium alloy nanocomposites prepared using ultrasound assisted stir casting", Compos. Part B Eng., 123, 64-73. https://doi.org/10.1016/j.compositesb.2017.05.007.
  23. Kumar, K.C.K., Kumar, B.R. and Rao, N.M. (2022), "Microstructural, mechanical characterization, and fractography of AZ31/SiC reinforced composites by stir casting method", Silicon, 14(9), 5017-5027. https://doi.org/10.1007/s12633-021-01180-7.
  24. Ma, G., Xiao, H., Ye, J. and He, Y. (2020), "Research status and development of magnesium matrix composites", Mater. Sci. Technol., 0(0), 1-9. https://doi.org/10.1080/02670836.2020.1732610.
  25. Malaki, M., Tehrani, A.F., Niroumand, B. and Gupta, M. (2021), "Wettability in metal matrix composites", Metals, 11(7), 1-24. https://doi.org/10.3390/met11071034.
  26. Rahman, M.W. (2019), "Preparation of magnesium diniobate by solid-state reactions and its role for hydrogen storage", J. Australian Ceram. Soc., 55(2), 579-586. https://doi.org/10.1007/s41779-018-0265-5.
  27. Rashad, M., Pan, F., Guo, W., Lin, H., Asif, M. and Irfan, M. (2015), "Effect of alumina and silicon carbide hybrid reinforcements on tensile, compressive and microhardness behavior of Mg-3Al-1Zn alloy", Mater. Character., 106, 382-389. https://doi.org/10.1016/j.matchar.2015.06.033.
  28. Safavi, M. S., Walsh, F. C., Visai, L. and Khalil-Allafi, J. (2022), "Progress in niobium oxide-containing coatings for biomedical applications: A critical review", ACS Omega, 7(11), 9088-9107. https://doi.org/10.1021/acsomega.2c00440.
  29. Sameer Kumar, D., Suman, K.N.S., Tara Sasanka, C., Ravindra, K., Poddar, P. and Venkata Siva, S.B. (2017), "Microstructure, mechanical response and fractography of AZ91E/Al2O3 (p) nano composite fabricated by semi solid stir casting method", J. Magnesium Alloys, 5(1), 48-55. https://doi.org/10.1016/j.jma.2016.11.006.
  30. Sathishkumar, P., Deepakaravind, V., Gopal, P. and Azhagiri, P. (2021), "Analysis the mechanical properties and material characterization on Magnesium Metal Matrix Nano composites through stir casting process", Mater. Today Proceedings, 46, 7436-7441. https://doi.org/10.1016/j.matpr.2021.01.041.
  31. Selivorstov, V., Dotsenko, Y. and Borodianskiy, K. (2017), "Influence of low-frequency vibration and modification on solidification and mechanical properties of Al-Si casting alloy", Materials, 10(5). https://doi.org/10.3390/ma10050560.
  32. Shen, M.J., Zhang, M.F. and Jia, J.H. (2020), "Deformation behavior and microstructure evolution of AZ31B composites containing multiscale distribution during room temperature tensile", J. Alloys Compd., 820, 153446. https://doi.org/10.1016/j.jallcom.2019.153446.
  33. Silva, C., Montoro, L.A., Martins, D.A.A., Machado, P.A., Pereira, P.H.R., Gonzalez, B.M., et al. (2020), "Interface structures in Al-Nb2O5 nanocomposites processed by high-pressure torsion at room temperature", Materials Characterization, 162, 110222. https://doi.org/10.1016/j.matchar.2020.110222.
  34. Vini, M. H. and Daneshmand, S. (2020), "Effect of TIO2 particles on the mechanical and microstructural evolution of hybrid aluminum-based composites fabricated by Warb", Surf. Rev. Lett., 27(12), 99-107. https://doi.org/10.1142/S0218625X20500262.
  35. Zhao, K.N., Li, H.X., Luo, J.R., Liu, Y.J., Du, Q. and Zhang, J.S. (2017), "Interfacial bonding mechanism and mechanical properties of novel AZ31/WE43 bimetal composites fabricated by insert molding method", J. Alloys Compd., 729, 344-353. https://doi.org/10.1016/j.jallcom.2017.09.166.
  36. Zhou, M.Y., Ren, L.B., Fan, L.L., Zhang, Y.W.X., Lu, T.H., Quan, G.F., et al. (2020), "Progress in research on hybrid metal matrix composites", J. Alloys Compd., 838. https://doi.org/10.1016/j.jallcom.2020.155274.
  37. Zhu, J., Yang, W., Yang, H. and Wang, F. (2011), "Effect of Nb2O5 on the microstructure and mechanical properties of TiAl based composites produced by hot pressing", Mater. Sci. Eng. A, 528(21), 6642-6646. https://doi.org/10.1016/j.msea.2011.04.062.