Acknowledgement
The authors would like to thank the Ministry of Science and Technology, Taiwan (MOST 109-2224-E-011-002-) for providing financial support.
References
- Abbas, A. and Huang, S.J. (2020a), "Qualitative and quantitative investigation of As-Cast and aged CNT/AZ31 metal matrix composites," J. Miner. Metals Mater. Soc., 72(6), 2272-2282. https://doi.org/10.1007/s11837-020-04114-7.
- Abbas, A. and Huang, S.J. (2020b), "Investigation of severe plastic deformation effects on microstructure and mechanical properties of WS2/AZ91 magnesium metal matrix composites," Mater. Sci. Eng. A, 780(January), 139211. https://doi.org/10.1016/j.msea.2020.139211.
- Abbas, A. and Huang, S.J. (2021), "Investigating the hall-petch constants for as-cast and aged az61/cnts metal matrix composites and their role on superposition law exponent," J. Compos. Sci., 5(4). https://doi.org/10.3390/jcs5040103.
- Alaneme, K.K., Adu, O.P., Oke, S.R., Falodun, O.E. and Olubambi, P.A. (2020a), "Densification characteristics, microstructure and wear behaviour of spark plasma sintering processed titanium-niobium pentoxide (Ti-Nb2O5) based composites", J. King Saud Univ. Eng. Sci., https://doi.org/10.1016/j.jksues.2020.10.005.
- Alaneme, K.K., Fatokun, A.A., Oke, S.R. and Olubambi, P.A. (2020b), "Nanoindentation studies and analysis of the mechanical properties of Ti-Nb2O5 based composites", Manuf. Rev., 7. https://doi.org/10.1051/mfreview/2020017.
- Ali Ghorbanpour Arani, A.F. and M.M. (2021), "The effect of nanoparticles on enhancement of the specific mechanical properties of the composite structures: A review research", Adv. Nano Res., 10(4), 327-337. https://doi.org/https://doi.org/10.12989/anr.2021.10.4.327.
- Bains, P.S., Sidhu, S.S. and Payal, H.S. (2016), "Fabrication and machining of metal matrix composites: A review", Mater. Manuf. Proc., 31(5), 553-573. https://doi.org/10.1080/10426914.2015.1025976.
- Banerjee, S., Poria, S., Sutradhar, G. and Sahoo, P. (2019), "Dry sliding tribological behavior of AZ31-WC nano-composites", J. Magnesium Alloys, 7(2), 315-327. https://doi.org/10.1016/j.jma.2018.11.005.
- Borodianskiy, K. and Zinigrad, M. (2015), "mechanical properties and microstructure characterization of Al-Si cast alloys formation using carbide nanoparticles", J. Mater. Sci. Appl., 1(3), 85-90.
- Chen, L.Y., Xu, J.Q., Choi, H., Pozuelo, M., Ma, X., Bhowmick, S., Yang, J.M., Mathaudhu, S. and Li, X.C. (2015), "Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles", Nature, 528(7583), 539-543. https://doi.org/10.1038/nature16445.
- Da Silva, A.L., Hotza, D. and Castro, R.H.R. (2017), "Surface energy effects on the stability of anatase and rutile nanocrystals: A predictive diagram for Nb2O5 -doped-TiO2", Appl. Surf. Sci., 393, 103-109. https://doi.org/10.1016/j.apsusc.2016.09.126.
- Dey, A. and Pandey, K.M. (2015), "Magnesium metal matrix composites-a review", Rev. Adv. Mater. Sci., 42(1), 58-67.
- Dinaharan, I., Vettivel, S.C., Balakrishnan, M. and Akinlabi, E.T. (2019), "Influence of processing route on microstructure and wear resistance of fly ash reinforced AZ31 magnesium matrix composites", J. Magnesium Alloys, 7(1), 155-165. https://doi.org/10.1016/j.jma.2019.01.003.
- Dinaharan, I., Zhang, S., Chen, G. and Shi, Q. (2020), "Titanium particulate reinforced AZ31 magnesium matrix composites with improved ductility prepared using friction stir processing", Mater. Sci. Eng. A, 772, 138793. https://doi.org/10.1016/j.msea.2019.138793.
- Flaminio, R., Franc, J., Michel, C., Morgado, N., Pinard, L. and Sassolas, B. (2010), "A study of coating mechanical and optical losses in view of reducing mirror thermal noise in gravitational wave detectors", Classical Quantum Gravity, 27(8). https://doi.org/10.1088/0264-9381/27/8/084030.
- Hassan, S.F. and Gupta, M. (2006), "Effect of type of primary processing on the microstructure, CTE and mechanical properties of magnesium/alumina nanocomposites", Compos. Struct., 72(1), 19-26. https://doi.org/10.1016/j.compstruct.2004.10.008.
- Hou, Y. N., Yang, K. M., Song, J., Wang, H., Liu, Y. and Fan, T. X. (2021), "A crystal plasticity model for metal matrix composites considering thermal mismatch stress induced dislocations and twins", Sci. Rep., 11(1), 1-13. https://doi.org/10.1038/s41598-021-95439-z.
- Huang, S.J., Subramani, M. and Chiang, C.C. (2021), "Effect of hybrid reinforcement on microstructure and mechanical properties of AZ61 magnesium alloy processed by stir casting method", Compos. Commun., 25, 100772. https://doi.org/10.1016/j.coco.2021.100772.
- Huang, S.J. and Abbas, A. (2020), "Effects of tungsten disulfide on microstructure and mechanical properties of AZ91 magnesium alloy manufactured by stir casting", J. Alloys Compd., 817, 153321. https://doi.org/10.1016/j.jallcom.2019.153321.
- Huang, S.J. and Ali, A.N. (2018), "Effects of heat treatment on the microstructure and microplastic deformation behavior of SiC particles reinforced AZ61 magnesium metal matrix composite", Mater. Sci. Eng. A, 711, 670-682. https://doi.org/10.1016/j.msea.2017.11.020.
- Idrisi, A.H. and Mourad, A.H.I. (2019), "Conventional stir casting versus ultrasonic assisted stir casting process: Mechanical and physical characteristics of AMCs", J. Alloys Compd., 805, 502-508. https://doi.org/10.1016/j.jallcom.2019.07.076.
- Khandelwal, A., Mani, K., Srivastava, N., Gupta, R. and Chaudhari, G.P. (2017), "Mechanical behavior of AZ31/Al2O3 magnesium alloy nanocomposites prepared using ultrasound assisted stir casting", Compos. Part B Eng., 123, 64-73. https://doi.org/10.1016/j.compositesb.2017.05.007.
- Kumar, K.C.K., Kumar, B.R. and Rao, N.M. (2022), "Microstructural, mechanical characterization, and fractography of AZ31/SiC reinforced composites by stir casting method", Silicon, 14(9), 5017-5027. https://doi.org/10.1007/s12633-021-01180-7.
- Ma, G., Xiao, H., Ye, J. and He, Y. (2020), "Research status and development of magnesium matrix composites", Mater. Sci. Technol., 0(0), 1-9. https://doi.org/10.1080/02670836.2020.1732610.
- Malaki, M., Tehrani, A.F., Niroumand, B. and Gupta, M. (2021), "Wettability in metal matrix composites", Metals, 11(7), 1-24. https://doi.org/10.3390/met11071034.
- Rahman, M.W. (2019), "Preparation of magnesium diniobate by solid-state reactions and its role for hydrogen storage", J. Australian Ceram. Soc., 55(2), 579-586. https://doi.org/10.1007/s41779-018-0265-5.
- Rashad, M., Pan, F., Guo, W., Lin, H., Asif, M. and Irfan, M. (2015), "Effect of alumina and silicon carbide hybrid reinforcements on tensile, compressive and microhardness behavior of Mg-3Al-1Zn alloy", Mater. Character., 106, 382-389. https://doi.org/10.1016/j.matchar.2015.06.033.
- Safavi, M. S., Walsh, F. C., Visai, L. and Khalil-Allafi, J. (2022), "Progress in niobium oxide-containing coatings for biomedical applications: A critical review", ACS Omega, 7(11), 9088-9107. https://doi.org/10.1021/acsomega.2c00440.
- Sameer Kumar, D., Suman, K.N.S., Tara Sasanka, C., Ravindra, K., Poddar, P. and Venkata Siva, S.B. (2017), "Microstructure, mechanical response and fractography of AZ91E/Al2O3 (p) nano composite fabricated by semi solid stir casting method", J. Magnesium Alloys, 5(1), 48-55. https://doi.org/10.1016/j.jma.2016.11.006.
- Sathishkumar, P., Deepakaravind, V., Gopal, P. and Azhagiri, P. (2021), "Analysis the mechanical properties and material characterization on Magnesium Metal Matrix Nano composites through stir casting process", Mater. Today Proceedings, 46, 7436-7441. https://doi.org/10.1016/j.matpr.2021.01.041.
- Selivorstov, V., Dotsenko, Y. and Borodianskiy, K. (2017), "Influence of low-frequency vibration and modification on solidification and mechanical properties of Al-Si casting alloy", Materials, 10(5). https://doi.org/10.3390/ma10050560.
- Shen, M.J., Zhang, M.F. and Jia, J.H. (2020), "Deformation behavior and microstructure evolution of AZ31B composites containing multiscale distribution during room temperature tensile", J. Alloys Compd., 820, 153446. https://doi.org/10.1016/j.jallcom.2019.153446.
- Silva, C., Montoro, L.A., Martins, D.A.A., Machado, P.A., Pereira, P.H.R., Gonzalez, B.M., et al. (2020), "Interface structures in Al-Nb2O5 nanocomposites processed by high-pressure torsion at room temperature", Materials Characterization, 162, 110222. https://doi.org/10.1016/j.matchar.2020.110222.
- Vini, M. H. and Daneshmand, S. (2020), "Effect of TIO2 particles on the mechanical and microstructural evolution of hybrid aluminum-based composites fabricated by Warb", Surf. Rev. Lett., 27(12), 99-107. https://doi.org/10.1142/S0218625X20500262.
- Zhao, K.N., Li, H.X., Luo, J.R., Liu, Y.J., Du, Q. and Zhang, J.S. (2017), "Interfacial bonding mechanism and mechanical properties of novel AZ31/WE43 bimetal composites fabricated by insert molding method", J. Alloys Compd., 729, 344-353. https://doi.org/10.1016/j.jallcom.2017.09.166.
- Zhou, M.Y., Ren, L.B., Fan, L.L., Zhang, Y.W.X., Lu, T.H., Quan, G.F., et al. (2020), "Progress in research on hybrid metal matrix composites", J. Alloys Compd., 838. https://doi.org/10.1016/j.jallcom.2020.155274.
- Zhu, J., Yang, W., Yang, H. and Wang, F. (2011), "Effect of Nb2O5 on the microstructure and mechanical properties of TiAl based composites produced by hot pressing", Mater. Sci. Eng. A, 528(21), 6642-6646. https://doi.org/10.1016/j.msea.2011.04.062.