참고문헌
- Abu-Qqail, A. Wagih, A. Fathy, A.O. Elkady, Q.A. and Kabeel A.M. (2019), "Effect of high energy ball milling on strengthening of Cu-ZrO2 nanocomposites", Ceram. Int., 45(5), 5866-5875. https://doi.org/10.1016/j.ceramint.2018.12.053.
- Alam, M.A. Ya, H.H. Azeem, M. Yusuf, M. Soomro, I.A. Masood, F. Shozib, I.A. Sapuan, S.M. and Akhter, J. (2022), "Artificial neural network modeling to predict the effect of milling time and TiC content on the crystallite size and lattice strain of Al7075-TiC composites fabricated by powder metallurgy", Crystals, 12(3), 1-20. https://doi.org/10.3390/cryst12030372.
- Berahmand, M. Ketabchi, M. Jamshidian, M. and Tsurekawa, S. (2021), "Investigation of microstructure evolution and martensite transformation developed in austenitic stainless steel subjected to a plastic strain gradient: A combination study of Mirco-XRD, EBSD, and ECCI techniques", Micron, 143(103014), 1-12. https://doi.org/10.1016/j.micron.2021.103014.
- Berek, H. Yanina, A. Weigelt, C. and Aneziris, C.G. (2011), "Determination of the phase distribution in sintered TRIPmatrix/Mg-PSZ composites using EBSD", Steel Res. Int., 82(9), 1094-1100. https://doi.org/10.1002/srin.201100064.
- Bhoi, N.K. Singh, H. and Pratap, S. (2020), "Developments in the aluminum metal matrix composites reinforced by micro/nano particles - A review", J. Compos. Mater., 54(6), 813-833. https://doi.org/10.1177/0021998319865307.
- Biermann, H. and Aneziris, C.G. (2020), Austenitic TRIP/TWIP Steels and Steels Zirconia-Composites, Springer, Cham, Switzerland.
- Brofman, P.J. and Ansell, G.S. (1978), "On the effect of carbon on the stacking fault energy of austenitic stainless steels", Metall. Mater. Trans. A, 9, 879-880. https://doi.org/10.1007/BF02649799.
- Casati, R. and Vedani, M. (2014), "Metal matrix composites reinforced by nano-particles - A review", Metals, 4(1), 65-83. https://doi.org/10.3390/met4010065.
- Cabeza, M. Feijoo, I. Merino, P. Pena, G. Perez, M.C. Cruz, S. and Rey, P. (2017), "Effect of high energy ball milling on the morphology, microstructure and properties of nano-sized TiC particle-reinforced 6005A aluminium alloy matrix composite", Powder Technol., 321, 31-43. https://doi.org/10.1016/j.powtec.2017.07.089.
- Eckner, R. Krampf, M. Segel, C. and Kruger L. (2016), "Strength and fracture behavior of a particle-reinforced transformationtoughened trip steel/ZrO2 composite", Mech. Compos. Mater., 51, 707-720. https://doi.org/10.1007/s11029-016-9541-z.
- El-Sherbiny, A. El-Fawkhry, M.K. Shash, A.Y. and Hossany T.E. (2020), "Replacement of silicon by aluminum with the aid of vanadium for galvanized TRIP steel", J. Mater. Res. Technol. 9(3), 3578-3589. https://doi.org/10.1016/j.jmrt.2020.01.096.
- Galindo-Nava, E.I. and Rivera-Diaz-del-Castillo, P. E. J. (2017), "Understanding martensite and twin formation in austenite steels: A model describing TRIP and TWIN effects", Acta Mater., 128, 120-134. https://doi.org/10.1016/j.actamat.2017.02.004.
- Garces, G. Mathis, K. Perez, P. Capek, J. and Adeva, P., (2016), "Effect of reinforcing shape on twinning in extruded magnesium matrix composites", Mater. Sci. Eng. A., 666, 48-53. https://doi.org/10.1016/j.msea.2016.04.028.
- Glage, A. Weigelt, C. Rathel, J. and Biermann H. (2013), "Influence of matrix strength and volume fraction of Mg-PSZ on the cyclic deformation behavior of hot pressed TRIP/TWIPmatrix composite materials", Adv. Eng. Mater., 15(7), 550-557. https://doi.org/10.1002/adem.201200334.
- Green, D.J., Hannink, R.H.J. and Swain, M.V. (2018), Transformation Toughening of Ceramics, CRC Press, Boca Raton, Florida, U.S.A.
- Jarvenpaa, A. Jaskari, M. Kisko, A. and Karjalainen, P. (2020), "Processing and properties of reversion-treated austenitic stainless steels", Metals, 10(281), 1-43. https://doi.org/10.3390/met10020281.
- Kamrani, S. Riedel, R. Seyed Reihani S.M. and Kleebe, H.J. (2009), "Effect of reinforcement volume fraction on the mechanical properties of Al-SiC nanocomposites produced by mechanical alloying and consolidation", J. Compos. Mater., 44(3), 313-326. https://doi.org/10.1177/0021998309347570.
- Kibasomba, P.M. Dhlamini, S. Maaza, Liu, C.P. Rashad, M.M. Rayan, D.A. and Mwakikunga, B.W. (2018), "Strain and grain size of TiOparticles from TEM, R nanoparticles from TEM, Raman spectroscopy and XRD: The revisiting of the Williamson-Hall plot method", Results Phys., 9, 628-635. https://doi.org/10.1016/j.rinp.2018.03.008.
- Kim, Y. Choi, W. Choo, H. An, K. Choi, H.S. and Lee, S.Y. (2020), "In situ neutron diffraction study of phase transformation of high Mn steel with different carbon content", Crystals, 10(101), 1-13. https://doi.org/10.3390/cryst10020101.
- Kirschner, M. Guk, S. Kawalla, R. and Prahl, U. (2021), "Powder forging of in axial and radial direction graded components of TRIP-matrix-composite", Metals, 11(3), 1-17. https://doi.org/10.3390/met11030378
- Kumar, S. Samantaraya, D. Aashranth, B. Keskar, N. Davinci, M.A. Borah, U. Srivastava, D. and Bhaduri, A.K. (2019), "Dependency of rate sensitive DRX behaviour on interstitial content of a FeCr-Ni-Mo alloy", Mater. Sci. Eng. A., 743, 148-158. https://doi.org/10.1016/j.msea.2018.11.062.
- Lehnert, R. Weidner, A. Motylenko, M. and Biermann H. (2019), "Strain hardening of phases in high-alloy CrMnNi steel as a consequence of pre-deformation studied by nanoindentation", Adv. Eng. Mater., 21(5)1800801, 1-14. https://doi.org/10.1002/adem.201800801.
- Li, J. Zheng, W. and Jiang, Q. (1999), "Stacking fault energy of iron-based shape memory alloys", Mater. Lett., 38(4), 275-277. https://doi.org/10.1016/S0167-577X(98)00172-4.
- Liu, J. Chen, Z. Zhang, F. Ji, G. Wang, M. Ma, Y. Ji, V. Zhong S. Wu, Y. and Wang, H. (2018), "Simultaneously increasing strength and ductility of nanoparticles reinforced Al composites via accumulative orthogonal extrusion process", Mater. Res. Lett., 6(8), 406-412. https://doi.org/10.1080/21663831.2018.1471421.
- Liu, J. Zhang, Q. Chen, Z. Wang, L. Ji, G. Shi, Q. Wu, Y. Zhang, F. and Wang, H. (2021), "Fabrication of fine grain structures in Al matrices at elevated temperature by the stimulation of dual-size particles", Mater. Sci. Eng. A., 805(140614), 1-10. https://doi.org/10.1016/j.msea.2020.140614.
- Lu, J. Hultman, L. Holmstrom, E. Antonsson, K.H. Grehk, M. Li, W. Vitos, L. and Golpayegani, A. (2016), "Stacking fault energies in austenitic stainless steels", Acta Mater., 111, 39-46. https://doi.org/10.1016/j.actamat.2016.03.042.
- Madhukar, P. Selvaraj, N. Kumar, G.B.V. Rao, C.S.B. Mohammad, F. Seetharam, R. and Chaval, M. (2022), "Influence of TiC nano-particulates on the physical andmechanical properties of AA7150-TiC MMC: Fabricated by advanced novel process", Nano Select, 3(1), 78-90. https://doi.org/10.1002/nano.202100094.
- Malaki, M. Xu, W. Kasar, A.K. Menezes, P.L. Dieringa, H. Varma, R.S. and Gupta, M. (2019), "Advanced metal matrix composites", Metals, 9(3), 330, 1-39. https://doi.org/10.3390/met9030330.
- Martin, S. Richter, S. Decker, S. Martin, U. Kruger, L. and Rafaja, D. (2011), "Reinforcing mechanism of Mg-PSZ particles in highly-alloyed TRIP steel", Steel Res. Int., 82(9), 1133-1140. https://doi.org/10.1002/srin.201100099.
- Martin, S. Richter, S. Poklad, A. Berek, H. Decker, S. Martin, U. Kruger, L. and Rafaja D. (2013), "Orientation relationships between phases arising during compression testing in ZrO2- TRIP-steel composite", J. Alloys. Compd., 577, S578-S582. https://doi.org/10.1016/j.jallcom.2012.02.014.
- Mu, D. Zhang, Z. Liang, J. Wang, J. and Zhang, D. (2022), "Investigation of microstructures and mechanical properties of SiC/AA2024 nanocomposites processed by powder metallurgy and T6 heat treatment", Materials, 15(3547), 1-16. https://doi.org/10.3390/ma15103547.
- Opiela, M. Fojt-Dymara, G. Grajcar, A. and Borek, W. (2020), "Effect of grain size on the microstructure and strain hardening behavior of solution heat-treated low-C high-Mn steel", Materials, 13(1489), 1-13. https://doi.org/10.3390/ma13071489.
- Pierce, D.T. Jimenez, J.A. Bentley, J. Raabe, D. and Wittig, J.E. (2015), "The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe-Mn-Al-Si steels during tensile deformation", Acta Mater., 100, 178-190. https://doi.org/10.1016/j.actamat.2015.08.030.
- Pruger, S. Mehlhorn, L. Muhlic, U. and Kuna, M. (2013), "Study of reinforcing mechanisms in TRIP-matrix composites under compressive loading by means of micromechanical simulations", Adv. Eng. Mater., 15(7), 542-549. https://doi.org/10.1002/adem.201200323.
- Qayyum, F. Guk, S. Schmidtchen, M. Kawalla, R. and Prahl, R. (2020), "Modeling the local deformation and transformation behavior of cast X8CrMnNi16-6-6 TRIP steel and 10% Mg-PSZ composite using a continuum mechanics-based crystal plasticity model", Crystals, 10(221), 1-25. https://doi.org/10.3390/cryst10030221.
- Saberi, Y. Zebarjad, S.M. and Akbari, G.H. (2009), "On the role of nano-size SiC on the lattice strain and grain size of Al/SiC nanocomposite", J. Alloy. Compd., 484, 637-640. https://doi.org/10.1016/j.jallcom.2009.05.009.
- Saheb, N. Khan, M.S. and Hakeem, A.S. (2015), "Effect of processing on mechanically alloyed and spark plasma sintered Al-Al2O3 nanocomposites", J. Nanomater., 2015(609824), 1-13. https://doi.org/10.1155/2015/609824.
- Salur, E. (2022), "Synergistic effect of ball milling time and nanosized Y2O3 addition on hardening of Cu-based nanocomposites", Arch. Civ. Mech., 22(103), 1-18. https://doi.org/10.1007/s43452-022-00429-1.
- Scherrer, P. (1918), "Nachrichten von der gesellschaft der wissenschaften zu gottingen", Math. Phys. Kl., 2, 98-100.
- Schramm, R.E. and Reed, R.P. (1975), "Stacking fault energies of seven commercial austenitic stainless steels", Metall .Trans. A., 6A, 1345-1351. https://doi.org/10.1007/BF02641927.
- Shashanka, R. and Debasis, C. (2017), Ball Milled NanoStructured Stainless Steel Powders, Educreation Publishing, New Delhi, India.
- Shyn, C.S. Rajesh, R. and Anand M.D. (2021), "A6061/B4C MMCs fabrication, experimental investigation and prediction of properties", IOP Conf. Ser.: Mater. Sci. Eng., 1017(012003), 1-13. https://doi.org/10.1088/1757-899X/1017/1/012003.
- Song, G.S. Ji, K.S. Song, H.W. and Zhang, S.H. (2019), "Microstructure and transformation and twinning mechanism of 304 stainless steel tube during hydraulic bulging", Mater. Res. Express, 6(12), 1-12. https://doi.org/10.1088/2053-1591/ab5375.
- Srisuwan, N. Eidhed, K. Kreatsereekul, N. Yingsamphanchareon, T. and Kaewvilai, A. (2016), "The study of heat treatment effects on chromium carbide precipitation of 35Cr-45Ni-Nb Alloy for repairing furnace tubes", Metals, 6(1), 26. https://doi.org/10.3390/met6010026.
- Sugimura, Y. and Suresh, S. (1992), "Effects of SiC content on fatigue crack growth in", Metall. Trans. A., 23, 2231-2242. https://doi.org/10.1007/BF02646016.
- Suryanarayana, C. (2019), "Mechanical alloying: A novel technique to synthesize advanced materials", Research, 4219812, 1-17. https://doi.org/10.34133/2019/4219812.
- Wang, X. and Xiong, W. (2020), "Stacking fault energy prediction for austenitic steels: thermodynamic modeling vs. machine learning", 21(1), 626-634. https://doi.org/10.1080/14686996.2020.1808433.
- Weigelt, C. Berek, H. Aneziris, C.G. Wolf, S. Eckner, R. and Kruger, L. (2015), "Effect of minor titanium additions on the phase composition of TRIP steel/magnesia partially stabilised zirconia composite materials", Ceram. Int., 41(2), 2328-2335. https://doi.org/10.1016/j.ceramint.2014.10.040.
- Weigelt, C. Schmidt, G. Anerizis, C.G. Eckner, R. Ehinger, D. Kruger, L. Ullrich, C. and Rafaja, D. (2017), "Compressive and tensile deformation behaviour of TRIP steel-matrix composite materials with reinforcing additions of zirconia and/or aluminium titanate", J. Alloy. Compd., 695, 9-20. https://doi.org/10.1016/j.jallcom.2016.10.176
- Weidner, A. (2020), Deformation Processes in TRIP/TWIN Steels: In-Situ Characterization Techniques, Springer, Cham, Switzerland.
- Weidner, A. and Biermann, H. (2015), "Combination of different in situ characterization techniques and scanning electron microscopy investigations for a comprehensive description of the tensile deformation behavior of a CrMnNi TRIP/TWIP Steel", JOM, 67(8), 1729-1747. https://doi.org/10.1007/s11837-015-1456-y.
- Williamson, G.K. and Hall, W.H. (1953), "X-ray line broadening from filled aluminium and wolfram", Acta Metall., 1(1), 22-31. https://doi.org/10.1016/0001-6160(53)90006-6.
- Woo, W. Jeong, J.S. Kim, D.K. Lee, C.M. Choi, S.H. Suh, J.Y. Lee, S.Y. Harjo, S. and Kawasaki, T. (2020), "Steel 316L and CrCoNi medium entropy alloy using in situ neutron diffraction", Sci. Rep., 10(1350), 1-15. https://doi.org/10.1038/s41598-020-58273-3.
- Wu, Q. Miao, W.S., Zhang, Y.D. Gao, H.J. and Hui, D. (2020), "Mechanical properties of nanomaterials: A review", Nanotechnol. Rev., 9(1), 259-273. https://doi.org/10.1515/ntrev-2020-0021.
- Xu, W. Galano, M. and Audebert, F. (2017), "Nanoquasicrystalline Al-Fe-Cr-Ti alloy matrix/γ-Al2O3 nanocomposite powders: The effect of the ball milling process", J. Alloys Compd., 701, 342-349. https://doi.org/10.1016/j.jallcom.2016.11.412.
- Zhao, K. Duan, Z. Liu, J. Kang, G. and An, L. (2022), "Strengthening mechanisms of 15 vol.% Al2O3 nanoparticles reinforced aluminum matrix nanocomposite fabricated by high energy ball milling and vacuum hot pressing", Acta Metall. Sin.-Engl., 35(6), 915-921. https://doi.org/10.1007/s40195-021-01306-1.
- Zhou, X.W. Foster, M.E. Sills, and R.B. (2018), "An Fe-Ni-Cr embedded atom method potential for austenitic and ferritic systems", J. Comput. Cam., 39(29), 2420-2431. https://doi.org/10.1002/jcc.25573.