DOI QR코드

DOI QR Code

Microstructure characterization and mechanical properties of Cr-Ni/ZrO2 nanocomposites

  • Sevinc, O zlem (Interdisciplinary Division of Materials Science and Engineering, Ege University) ;
  • Diler, Ege A. (Department of Mechanical Engineering, Ege University)
  • 투고 : 2020.08.17
  • 심사 : 2022.07.29
  • 발행 : 2022.10.25

초록

The microstructure and mechanical properties of Cr-Ni steel and Cr-Ni steel-matrix nanocomposites reinforced with nano-ZrO2 particles were investigated in this study. Cr-Ni steel and Cr-Ni/ZrO2 nanocomposites were produced using a combination of high-energy ball milling, pressing, and sintering processes. The microstructures of the specimens were analyzed using EDX and XRD. Compression and hardness tests were performed to determine the mechanical properties of the specimens. Nano-ZrO2 particles were effective in preventing chrome carbide precipitate at the grain boundaries. While t-ZrO2 was detected in Cr-Ni/ZrO2 nanocomposites, m-ZrO2 could not be found. Few α'-martensite and deformation bands were formed in the microstructures of Cr-Ni/ZrO2 nanocomposites. Although nano-ZrO2 particles had a negligible impact on the strength improvement provided by deformation-induced plasticity mechanisms in Cr-Ni/ZrO2 nanocomposites, the mechanical properties of Cr-Ni steel were significantly improved by using nano-ZrO2 particles. The hardness and compressive strength of Cr-Ni/ZrO2 nanocomposite were higher than those of Cr-Ni steel and enhanced as the weight fraction of nano-ZrO2 particles increased. Cr-Ni/ZrO2 nanocomposite with 5wt.% nano-ZrO2 particles had almost twofold the hardness and compressive strength of Cr-Ni steel. The nano-ZrO2 particles were considerably more effective on particle-strengthening mechanisms than deformation-induced strengthening mechanisms in Cr-Ni/ZrO2 nanocomposites.

키워드

참고문헌

  1. Abu-Qqail, A. Wagih, A. Fathy, A.O. Elkady, Q.A. and Kabeel A.M. (2019), "Effect of high energy ball milling on strengthening of Cu-ZrO2 nanocomposites", Ceram. Int., 45(5), 5866-5875. https://doi.org/10.1016/j.ceramint.2018.12.053.
  2. Alam, M.A. Ya, H.H. Azeem, M. Yusuf, M. Soomro, I.A. Masood, F. Shozib, I.A. Sapuan, S.M. and Akhter, J. (2022), "Artificial neural network modeling to predict the effect of milling time and TiC content on the crystallite size and lattice strain of Al7075-TiC composites fabricated by powder metallurgy", Crystals, 12(3), 1-20. https://doi.org/10.3390/cryst12030372.
  3. Berahmand, M. Ketabchi, M. Jamshidian, M. and Tsurekawa, S. (2021), "Investigation of microstructure evolution and martensite transformation developed in austenitic stainless steel subjected to a plastic strain gradient: A combination study of Mirco-XRD, EBSD, and ECCI techniques", Micron, 143(103014), 1-12. https://doi.org/10.1016/j.micron.2021.103014.
  4. Berek, H. Yanina, A. Weigelt, C. and Aneziris, C.G. (2011), "Determination of the phase distribution in sintered TRIPmatrix/Mg-PSZ composites using EBSD", Steel Res. Int., 82(9), 1094-1100. https://doi.org/10.1002/srin.201100064.
  5. Bhoi, N.K. Singh, H. and Pratap, S. (2020), "Developments in the aluminum metal matrix composites reinforced by micro/nano particles - A review", J. Compos. Mater., 54(6), 813-833. https://doi.org/10.1177/0021998319865307.
  6. Biermann, H. and Aneziris, C.G. (2020), Austenitic TRIP/TWIP Steels and Steels Zirconia-Composites, Springer, Cham, Switzerland.
  7. Brofman, P.J. and Ansell, G.S. (1978), "On the effect of carbon on the stacking fault energy of austenitic stainless steels", Metall. Mater. Trans. A, 9, 879-880. https://doi.org/10.1007/BF02649799.
  8. Casati, R. and Vedani, M. (2014), "Metal matrix composites reinforced by nano-particles - A review", Metals, 4(1), 65-83. https://doi.org/10.3390/met4010065.
  9. Cabeza, M. Feijoo, I. Merino, P. Pena, G. Perez, M.C. Cruz, S. and Rey, P. (2017), "Effect of high energy ball milling on the morphology, microstructure and properties of nano-sized TiC particle-reinforced 6005A aluminium alloy matrix composite", Powder Technol., 321, 31-43. https://doi.org/10.1016/j.powtec.2017.07.089.
  10. Eckner, R. Krampf, M. Segel, C. and Kruger L. (2016), "Strength and fracture behavior of a particle-reinforced transformationtoughened trip steel/ZrO2 composite", Mech. Compos. Mater., 51, 707-720. https://doi.org/10.1007/s11029-016-9541-z.
  11. El-Sherbiny, A. El-Fawkhry, M.K. Shash, A.Y. and Hossany T.E. (2020), "Replacement of silicon by aluminum with the aid of vanadium for galvanized TRIP steel", J. Mater. Res. Technol. 9(3), 3578-3589. https://doi.org/10.1016/j.jmrt.2020.01.096.
  12. Galindo-Nava, E.I. and Rivera-Diaz-del-Castillo, P. E. J. (2017), "Understanding martensite and twin formation in austenite steels: A model describing TRIP and TWIN effects", Acta Mater., 128, 120-134. https://doi.org/10.1016/j.actamat.2017.02.004.
  13. Garces, G. Mathis, K. Perez, P. Capek, J. and Adeva, P., (2016), "Effect of reinforcing shape on twinning in extruded magnesium matrix composites", Mater. Sci. Eng. A., 666, 48-53. https://doi.org/10.1016/j.msea.2016.04.028.
  14. Glage, A. Weigelt, C. Rathel, J. and Biermann H. (2013), "Influence of matrix strength and volume fraction of Mg-PSZ on the cyclic deformation behavior of hot pressed TRIP/TWIPmatrix composite materials", Adv. Eng. Mater., 15(7), 550-557. https://doi.org/10.1002/adem.201200334.
  15. Green, D.J., Hannink, R.H.J. and Swain, M.V. (2018), Transformation Toughening of Ceramics, CRC Press, Boca Raton, Florida, U.S.A.
  16. Jarvenpaa, A. Jaskari, M. Kisko, A. and Karjalainen, P. (2020), "Processing and properties of reversion-treated austenitic stainless steels", Metals, 10(281), 1-43. https://doi.org/10.3390/met10020281.
  17. Kamrani, S. Riedel, R. Seyed Reihani S.M. and Kleebe, H.J. (2009), "Effect of reinforcement volume fraction on the mechanical properties of Al-SiC nanocomposites produced by mechanical alloying and consolidation", J. Compos. Mater., 44(3), 313-326. https://doi.org/10.1177/0021998309347570.
  18. Kibasomba, P.M. Dhlamini, S. Maaza, Liu, C.P. Rashad, M.M. Rayan, D.A. and Mwakikunga, B.W. (2018), "Strain and grain size of TiOparticles from TEM, R nanoparticles from TEM, Raman spectroscopy and XRD: The revisiting of the Williamson-Hall plot method", Results Phys., 9, 628-635. https://doi.org/10.1016/j.rinp.2018.03.008.
  19. Kim, Y. Choi, W. Choo, H. An, K. Choi, H.S. and Lee, S.Y. (2020), "In situ neutron diffraction study of phase transformation of high Mn steel with different carbon content", Crystals, 10(101), 1-13. https://doi.org/10.3390/cryst10020101.
  20. Kirschner, M. Guk, S. Kawalla, R. and Prahl, U. (2021), "Powder forging of in axial and radial direction graded components of TRIP-matrix-composite", Metals, 11(3), 1-17. https://doi.org/10.3390/met11030378
  21. Kumar, S. Samantaraya, D. Aashranth, B. Keskar, N. Davinci, M.A. Borah, U. Srivastava, D. and Bhaduri, A.K. (2019), "Dependency of rate sensitive DRX behaviour on interstitial content of a FeCr-Ni-Mo alloy", Mater. Sci. Eng. A., 743, 148-158. https://doi.org/10.1016/j.msea.2018.11.062.
  22. Lehnert, R. Weidner, A. Motylenko, M. and Biermann H. (2019), "Strain hardening of phases in high-alloy CrMnNi steel as a consequence of pre-deformation studied by nanoindentation", Adv. Eng. Mater., 21(5)1800801, 1-14. https://doi.org/10.1002/adem.201800801.
  23. Li, J. Zheng, W. and Jiang, Q. (1999), "Stacking fault energy of iron-based shape memory alloys", Mater. Lett., 38(4), 275-277. https://doi.org/10.1016/S0167-577X(98)00172-4.
  24. Liu, J. Chen, Z. Zhang, F. Ji, G. Wang, M. Ma, Y. Ji, V. Zhong S. Wu, Y. and Wang, H. (2018), "Simultaneously increasing strength and ductility of nanoparticles reinforced Al composites via accumulative orthogonal extrusion process", Mater. Res. Lett., 6(8), 406-412. https://doi.org/10.1080/21663831.2018.1471421.
  25. Liu, J. Zhang, Q. Chen, Z. Wang, L. Ji, G. Shi, Q. Wu, Y. Zhang, F. and Wang, H. (2021), "Fabrication of fine grain structures in Al matrices at elevated temperature by the stimulation of dual-size particles", Mater. Sci. Eng. A., 805(140614), 1-10. https://doi.org/10.1016/j.msea.2020.140614.
  26. Lu, J. Hultman, L. Holmstrom, E. Antonsson, K.H. Grehk, M. Li, W. Vitos, L. and Golpayegani, A. (2016), "Stacking fault energies in austenitic stainless steels", Acta Mater., 111, 39-46. https://doi.org/10.1016/j.actamat.2016.03.042.
  27. Madhukar, P. Selvaraj, N. Kumar, G.B.V. Rao, C.S.B. Mohammad, F. Seetharam, R. and Chaval, M. (2022), "Influence of TiC nano-particulates on the physical andmechanical properties of AA7150-TiC MMC: Fabricated by advanced novel process", Nano Select, 3(1), 78-90. https://doi.org/10.1002/nano.202100094.
  28. Malaki, M. Xu, W. Kasar, A.K. Menezes, P.L. Dieringa, H. Varma, R.S. and Gupta, M. (2019), "Advanced metal matrix composites", Metals, 9(3), 330, 1-39. https://doi.org/10.3390/met9030330.
  29. Martin, S. Richter, S. Decker, S. Martin, U. Kruger, L. and Rafaja, D. (2011), "Reinforcing mechanism of Mg-PSZ particles in highly-alloyed TRIP steel", Steel Res. Int., 82(9), 1133-1140. https://doi.org/10.1002/srin.201100099.
  30. Martin, S. Richter, S. Poklad, A. Berek, H. Decker, S. Martin, U. Kruger, L. and Rafaja D. (2013), "Orientation relationships between phases arising during compression testing in ZrO2- TRIP-steel composite", J. Alloys. Compd., 577, S578-S582. https://doi.org/10.1016/j.jallcom.2012.02.014.
  31. Mu, D. Zhang, Z. Liang, J. Wang, J. and Zhang, D. (2022), "Investigation of microstructures and mechanical properties of SiC/AA2024 nanocomposites processed by powder metallurgy and T6 heat treatment", Materials, 15(3547), 1-16. https://doi.org/10.3390/ma15103547.
  32. Opiela, M. Fojt-Dymara, G. Grajcar, A. and Borek, W. (2020), "Effect of grain size on the microstructure and strain hardening behavior of solution heat-treated low-C high-Mn steel", Materials, 13(1489), 1-13. https://doi.org/10.3390/ma13071489.
  33. Pierce, D.T. Jimenez, J.A. Bentley, J. Raabe, D. and Wittig, J.E. (2015), "The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe-Mn-Al-Si steels during tensile deformation", Acta Mater., 100, 178-190. https://doi.org/10.1016/j.actamat.2015.08.030.
  34. Pruger, S. Mehlhorn, L. Muhlic, U. and Kuna, M. (2013), "Study of reinforcing mechanisms in TRIP-matrix composites under compressive loading by means of micromechanical simulations", Adv. Eng. Mater., 15(7), 542-549. https://doi.org/10.1002/adem.201200323.
  35. Qayyum, F. Guk, S. Schmidtchen, M. Kawalla, R. and Prahl, R. (2020), "Modeling the local deformation and transformation behavior of cast X8CrMnNi16-6-6 TRIP steel and 10% Mg-PSZ composite using a continuum mechanics-based crystal plasticity model", Crystals, 10(221), 1-25. https://doi.org/10.3390/cryst10030221.
  36. Saberi, Y. Zebarjad, S.M. and Akbari, G.H. (2009), "On the role of nano-size SiC on the lattice strain and grain size of Al/SiC nanocomposite", J. Alloy. Compd., 484, 637-640. https://doi.org/10.1016/j.jallcom.2009.05.009.
  37. Saheb, N. Khan, M.S. and Hakeem, A.S. (2015), "Effect of processing on mechanically alloyed and spark plasma sintered Al-Al2O3 nanocomposites", J. Nanomater., 2015(609824), 1-13. https://doi.org/10.1155/2015/609824.
  38. Salur, E. (2022), "Synergistic effect of ball milling time and nanosized Y2O3 addition on hardening of Cu-based nanocomposites", Arch. Civ. Mech., 22(103), 1-18. https://doi.org/10.1007/s43452-022-00429-1.
  39. Scherrer, P. (1918), "Nachrichten von der gesellschaft der wissenschaften zu gottingen", Math. Phys. Kl., 2, 98-100.
  40. Schramm, R.E. and Reed, R.P. (1975), "Stacking fault energies of seven commercial austenitic stainless steels", Metall .Trans. A., 6A, 1345-1351. https://doi.org/10.1007/BF02641927.
  41. Shashanka, R. and Debasis, C. (2017), Ball Milled NanoStructured Stainless Steel Powders, Educreation Publishing, New Delhi, India.
  42. Shyn, C.S. Rajesh, R. and Anand M.D. (2021), "A6061/B4C MMCs fabrication, experimental investigation and prediction of properties", IOP Conf. Ser.: Mater. Sci. Eng., 1017(012003), 1-13. https://doi.org/10.1088/1757-899X/1017/1/012003.
  43. Song, G.S. Ji, K.S. Song, H.W. and Zhang, S.H. (2019), "Microstructure and transformation and twinning mechanism of 304 stainless steel tube during hydraulic bulging", Mater. Res. Express, 6(12), 1-12. https://doi.org/10.1088/2053-1591/ab5375.
  44. Srisuwan, N. Eidhed, K. Kreatsereekul, N. Yingsamphanchareon, T. and Kaewvilai, A. (2016), "The study of heat treatment effects on chromium carbide precipitation of 35Cr-45Ni-Nb Alloy for repairing furnace tubes", Metals, 6(1), 26. https://doi.org/10.3390/met6010026.
  45. Sugimura, Y. and Suresh, S. (1992), "Effects of SiC content on fatigue crack growth in", Metall. Trans. A., 23, 2231-2242. https://doi.org/10.1007/BF02646016.
  46. Suryanarayana, C. (2019), "Mechanical alloying: A novel technique to synthesize advanced materials", Research, 4219812, 1-17. https://doi.org/10.34133/2019/4219812.
  47. Wang, X. and Xiong, W. (2020), "Stacking fault energy prediction for austenitic steels: thermodynamic modeling vs. machine learning", 21(1), 626-634. https://doi.org/10.1080/14686996.2020.1808433.
  48. Weigelt, C. Berek, H. Aneziris, C.G. Wolf, S. Eckner, R. and Kruger, L. (2015), "Effect of minor titanium additions on the phase composition of TRIP steel/magnesia partially stabilised zirconia composite materials", Ceram. Int., 41(2), 2328-2335. https://doi.org/10.1016/j.ceramint.2014.10.040.
  49. Weigelt, C. Schmidt, G. Anerizis, C.G. Eckner, R. Ehinger, D. Kruger, L. Ullrich, C. and Rafaja, D. (2017), "Compressive and tensile deformation behaviour of TRIP steel-matrix composite materials with reinforcing additions of zirconia and/or aluminium titanate", J. Alloy. Compd., 695, 9-20. https://doi.org/10.1016/j.jallcom.2016.10.176
  50. Weidner, A. (2020), Deformation Processes in TRIP/TWIN Steels: In-Situ Characterization Techniques, Springer, Cham, Switzerland.
  51. Weidner, A. and Biermann, H. (2015), "Combination of different in situ characterization techniques and scanning electron microscopy investigations for a comprehensive description of the tensile deformation behavior of a CrMnNi TRIP/TWIP Steel", JOM, 67(8), 1729-1747. https://doi.org/10.1007/s11837-015-1456-y.
  52. Williamson, G.K. and Hall, W.H. (1953), "X-ray line broadening from filled aluminium and wolfram", Acta Metall., 1(1), 22-31. https://doi.org/10.1016/0001-6160(53)90006-6.
  53. Woo, W. Jeong, J.S. Kim, D.K. Lee, C.M. Choi, S.H. Suh, J.Y. Lee, S.Y. Harjo, S. and Kawasaki, T. (2020), "Steel 316L and CrCoNi medium entropy alloy using in situ neutron diffraction", Sci. Rep., 10(1350), 1-15. https://doi.org/10.1038/s41598-020-58273-3.
  54. Wu, Q. Miao, W.S., Zhang, Y.D. Gao, H.J. and Hui, D. (2020), "Mechanical properties of nanomaterials: A review", Nanotechnol. Rev., 9(1), 259-273. https://doi.org/10.1515/ntrev-2020-0021.
  55. Xu, W. Galano, M. and Audebert, F. (2017), "Nanoquasicrystalline Al-Fe-Cr-Ti alloy matrix/γ-Al2O3 nanocomposite powders: The effect of the ball milling process", J. Alloys Compd., 701, 342-349. https://doi.org/10.1016/j.jallcom.2016.11.412.
  56. Zhao, K. Duan, Z. Liu, J. Kang, G. and An, L. (2022), "Strengthening mechanisms of 15 vol.% Al2O3 nanoparticles reinforced aluminum matrix nanocomposite fabricated by high energy ball milling and vacuum hot pressing", Acta Metall. Sin.-Engl., 35(6), 915-921. https://doi.org/10.1007/s40195-021-01306-1.
  57. Zhou, X.W. Foster, M.E. Sills, and R.B. (2018), "An Fe-Ni-Cr embedded atom method potential for austenitic and ferritic systems", J. Comput. Cam., 39(29), 2420-2431. https://doi.org/10.1002/jcc.25573.