DOI QR코드

DOI QR Code

Setting Time Evaluation on Cement Paste with Retarder Using Non-Destructive Measurements

비파괴 측정법을 이용한 지연제 첨가 시멘트 페이스트의 응결 평가

  • 안유리 (부산대학교 사회환경시스템공학과) ;
  • 전유빈 (한국과학기술원 건설및환경공학과) ;
  • 임홍재 (부산대학교 사회환경시스템공학과)
  • Received : 2022.07.06
  • Accepted : 2022.07.23
  • Published : 2022.08.30

Abstract

Controlling the setting time of cementitious materials is one of the most important factors in securing early-age performance of concrete structures. Recently, the use of retarding admixtures, which enable the inhibition of some hydration products to control the securing time due to average temperature rise is suggested. Although various non-destructive evaluation methods have been proposed to evaluate cement hydration and hardening of cement-based materials to overcome the limitations of Vicat needle test, experimental research is still required to use the non-destructive evaluation method with added retarding admixtures. In this study, measurements of electrical resistivity and ultrasonic wave velocity in early-aged cement pastes were performed according to the addition of retarding admixture(tartaric acid). The setting time of the cement pastes was evaluated by obtained rising time of the both non-destructive measurements. As a result, the possibility of evaluating the setting delay in cement pastes was confirmed through comparative analysis with the initial and final setting times by Vicat test. In addition, X-ray diffraction results at the rising time of electrical resistivity showed a key hydration product affecting the setting delay.

시멘트계 재료의 응결시간 제어는 초기 콘크리트 성능 확보를 위한 중요한 평가 요소 중 하나이다. 최근 평균 기온 상승으로 특정 수화물 생성 억제 및 응결시간 제어를 위한 지연제의 사용이 권장되고 있다. 비카트 침 등 관입저항 측정 시험법의 한계를 극복하기 위해 응결시점 평가를 위한 다양한 비파괴 평가 기법이 제안되고 있지만, 지연제 사용에 따른 비파괴 평가법 사용 가능성 확보를 위해서는 여전히 실험적 연구 수행이 요구되고 있다. 본 연구에서는 타타르산 지연제를 사용하여 시멘트 페이스트의 응결 지연을 유도하고, 비카트 침 시험과 함께 전기비저항과 초음파 속도 모니터링을 수행하였다. 두 비파괴 측정 결과의 상승시점 결정을 통해 시멘트 페이스트의 응결시점을 평가하고, 비카트 침 측정을 통한 초결 및 종결 시점과의 분석으로 지연제 사용에 따른 응결 지연 현상 평가 가능성을 확인하였다. 또한 전기비저항 상승시점에 대한 X선 회절 분석을 통해 타타르산 지연제 사용에 따른 수화반응 변화를 측정하고 전기비저항 측정의 응결 지연 평가에 영향을 주는 주요 수화물을 확인하였다.

Keywords

Acknowledgement

이 성과는 2022년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. NRF-2022R1C1C1009589)

References

  1. Pang, X., Sun, L., Sun, F., Zhang, G., Guo, S., and Bu, Y. (2021), Cement Hydration Kinetics Study in The Temperature Range from 15 ℃ to 95 ℃, Cement and Concrete Research, 148, 106552. https://doi.org/10.1016/j.cemconres.2021.106552
  2. Neville, A.M., (1998), Properties of Concrete 4th. Edition, John Wiley & Sons Inc, New York, Pitman Publishing Ltd, London, 844.
  3. Young, J. F. (1972), A Review of The Mechanisms of Set-Retardation in Portland Cement Pastes Containing Organic Admixtures, Cement and Concrete Research, 2(4), 415-433. https://doi.org/10.1016/0008-8846(72)90057-9
  4. Carino, S. J. (1994), Nondestructive Testing of Concrete: History and Challenges, Concrete Technology: Past, Present and Future, ACI SP-144, 623-678.
  5. Carino, S. J. (1995), The Use of Temperature as An Indicator of Setting Time of Mortar Specimens, Undergraduate Research Project, Cornell University, Ithaca, NY.
  6. Pinto, R. C., and Hover, K. C. (1999), Application of Maturity Approach to Setting Times, Materials Journal, 96(6), 686-691.
  7. Torrents, J. M., and Pallas-Areny, R. (1997), Measurement of Cement Setting by Impedance Monitoring, In IEEE Instrumentation and Measurement Technology Conference Sensing, Processing, Networking. IMTC Proceedings, IEEE, 1089-1093.
  8. Lee, H. K., Lee, K. M., Kim, Y. H., Yim, H., and Bae, D. B. (2004), Ultrasonic In-Situ Monitoring of Setting Process of HighPerformance Concrete, Cement and Concrete Research, 34(4), 631-640. https://doi.org/10.1016/j.cemconres.2003.10.012
  9. Chung, C. W., Suraneni, P., Popovics, J. S., and Struble, L. J. (2012), Setting Time Measurement Using Ultrasonic Wave Reflection. ACI Materials Journal, 109(1), 109-117.
  10. Trtnik, G., Valic, M. I., and Turk, G. (2013), Measurement of Setting Process of Cement Pastes Using Non-Destructive Ultrasonic Shear Wave Reflection Technique, NDT & E International, 56, 65-75. https://doi.org/10.1016/j.ndteint.2013.02.004
  11. Yim, H. J., Kim, J. H., and Shah, S. P. (2014), Ultrasonic Monitoring of The Setting of Cement-Based Materials: Frequency Dependence, Construction and Building Materials, 65, 518-525. https://doi.org/10.1016/j.conbuildmat.2014.04.128
  12. Yim, H. J., Bae, Y. H., and Jun, Y. (2021), Hydration and Microstructural Characterization of Early-Age Cement Paste with Ultrasonic Wave Velocity and Electrical Resistivity Measurements, Construction and Building Materials, 303, 124508. https://doi.org/10.1016/j.conbuildmat.2021.124508
  13. Heikal, M., Morsy, M. S., and Aiad, I. (2005), Effect of Treatment Temperature on The Early Hydration Characteristics of Superplasticized Silica Fume Blended Cement Pastes, Cement and Concrete Research, 35(4), 680-687. https://doi.org/10.1016/j.cemconres.2004.06.012
  14. Schwarz, N., DuBois, M., and Neithalath, N. (2007), Electrical Conductivity Based Characterization of Plain and Coarse Glass Powder Modified Cement Pastes, Cement and concrete composites, 29(9), 656-666. https://doi.org/10.1016/j.cemconcomp.2007.05.005
  15. Koleva, D. A., Copuroglu, O., Van Breugel, K., Ye, G., and De Wit, J. H. W. (2008), Electrical Resistivity and Microstructural Properties of Concrete Materials in Conditions of Current Flow, Cement and Concrete Composites, 30(8), 731-744. https://doi.org/10.1016/j.cemconcomp.2008.04.001
  16. Yim, H. J., Lee, H., and Kim, J.H. (2017), Evaluation of Mortar Setting Time by Using Electrical Resistivity Measurements, Construction and Building Materials, 146, 679-686. https://doi.org/10.1016/j.conbuildmat.2017.04.088
  17. Campo, M. A., Woo, L. Y., Mason, T. O., and Garboczi, E. J. (2002), Frequency-Dependent Electrical Mixing Law Behavior in Spherical Particle Composites, Journal of electroceramics, 9(1), 49-56. https://doi.org/10.1023/A:1021642118889
  18. Wang, Z., Zeng, Q., Wang, L., Yao, Y., and Li, K. (2015), Electrical Resistivity of Cement Pastes Undergoing Cyclic Freeze-Thaw Action, Journal of Materials in Civil Engineering, 27(1), 04014109. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001042
  19. Topcu, I. B., Uygunoglu, T., and Hocaoglu, I. (2012), Electrical Conductivity of Setting Cement Paste with Different Mineral Admixtures, Construction and Building Materials, 28(1), 414-420. https://doi.org/10.1016/j.conbuildmat.2011.08.068
  20. Andi, M., and Yohanes, G. R. (2019), Experimental Study of Crack Depth Measurement of Concrete with Ultrasonic Pulse Velocity (UPV), In IOP Conference Series: Materials Science and Engineering, IOP Publishing, 673(1), 012047. https://doi.org/10.1088/1757-899X/673/1/012047
  21. Bishop, M., and Barron, A. R. (2006), Cement Hydration Inhibition with Sucrose, Tartaric Acid, and Lignosulfonate: Analytical and Spectroscopic Study, Industrial & engineering chemistry research, 45(21), 7042-7049. https://doi.org/10.1021/ie060806t
  22. Rai, S., Singh, N. B., and Singh, N. P. (2006), Interaction of Tartaric Acid during Hydration of Portland Cement, Indian journal of chemical technology, 13(3), 255-261.
  23. Stauffer, J. D., Woodward, C. B., and White, K. R. (2005), Nonlinear Ultrasonic Testing with Resonant and Pulse Velocity Parameters for Early Damage in Concrete, ACI materials journal, 102(2), 118.
  24. Zhang, J., and Scherer, G. W. (2011), Comparison of Methods for Arresting Hydration of Cement, Cement and Concrete Research, 41(10), 1024-1036. https://doi.org/10.1016/j.cemconres.2011.06.003
  25. Jeong, Y., Oh, J. E., Jun, Y., Park, J., and Sohn, S. G. (2016), Influence of Four Additional Activators on Hydrated-Lime [Ca(OH)2] Activated Ground Granulated Blast-Furnace Slag, Cement and Concrete Composites, 65, 1-10. https://doi.org/10.1016/j.cemconcomp.2015.10.007
  26. Zhang, Y., Zhang, W., She, W., Ma, L., and Zhu, W. (2012), Ultrasound Monitoring of Setting and Hardening Process of Ultra-High Performance Cementitious Materials, Ndt & E International, 47, 177-184. https://doi.org/10.1016/j.ndteint.2009.10.006
  27. ASTM C305-14, Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency, ASTM International, West Conshohocken, PA, 2014.
  28. ASTM C191-21, Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle, ASTM International, West Conshohocken, PA, 2021.
  29. ASTM C597-16, Standard Test Method for Pulse Velocity Through Concrete, ASTM International, West Conshohocken, PA, 2016.
  30. Han, C. G., Han, M. C., Yoon, C. W., and Sim, B. K. (2001), Setting and Compressive Strength Properties of Cement Mortar Using Super Retarding Agent, Journal of the Architecture Institute of Korea Structure & Construction, AURIC, 17(10), 87-94.
  31. Lee, H. K., Lee, K. M., Kim, Y. H., and Yim, H. J. (2002), Estimation of Setting Time and Early-Age Strength of Concrete Using the Ultrasonic Pulse Velocity, Journal of the Korean Society for Nondestructive Testing, 22(3), 292-303.
  32. Kim, D. J., Kim, S. C., Han, W., Lee, J. S., and Byun, Y. H. (2020), Evaluation of Early-age Properties of Controlled Low Strength Material Using Non-destructive Testing, Journal of The Korean Society of Agricultural Engineers, 62(2), 31-38. https://doi.org/10.5389/KSAE.2020.62.2.031
  33. Lee, B. H., and Lee, S. C. (1999), Major Foundational Techniquess for Grounding Systems, Uije Publication Ltd, 45-51.
  34. Hwang, G. R., and Shin, S. W. (2012), Setting Monitoring of Hydration Cement-Based Materials Using Electrical Impedance Spectroscopy, Proceedings of Korean Society of Civil Engineers Conference, Korean Society of Civil Engineers, Gwangju, Korea, 2449-2452.
  35. Shin, S. W., Hwang, G., and Lee, C. J. (2014), Electrical Impedance Response Model of Concrete in Setting Process, Journal of the Korean Society of Safety, 29(5), 116-122. https://doi.org/10.14346/JKOSOS.2014.29.5.116