DOI QR코드

DOI QR Code

휨하중을 받는 스마트 초고강도 섬유보강 콘크리트의 전기역학적 거동 조사

Investigation of the Electromechanical Response of Smart Ultra-high Performance Fiber Reinforced Concretes Under Flexural

  • 김태욱 (세종대학교, 건설환경공학과) ;
  • 김민경 (세종대학교, 건설환경공학과) ;
  • 김동주 (세종대학교, 건설환경공학과, 철도인프라연구소)
  • 투고 : 2022.08.25
  • 심사 : 2022.10.17
  • 발행 : 2022.10.30

초록

본 연구에서는 smart ultra-high performance fiber reinforced concretes (S-UHPFRCs)의 자기감지 능력을 검증하기 위해 인장과 압축 영역에서 휨 하중에 따른 S-UHPFRCs의 전기역학적 거동을 조사하였다. 휨 하중 하에서 S-UHPFRCs의 전기저항률은 초기균열 이후 다수의 미세균열을 보이는 변형-경화 거동으로 인해 계속해서 변화된다. 압축 영역에서 S-UHPFRCs의 전기저항률은 등가 휨 응력이 증가함에 따라 976.57에서 514.05 kΩ-cm로 (47.00%) 감소하였으며, 인장 영역에서는 979.61에서 682.28 kΩ-cm로 (30.40%) 감소하였다. S-UHPFRCs의 응력 민감도 계수는 압축 영역과 인장 영역이 각각 1.709와 1.098 %/MPa이다. S-UHPFRCs의 처짐 감지 능력은 압축 영역 (30.06 %/mm)이 인장 영역 (19.72 %/mm)보다 높았다. 초기 처짐 감지 능력은 측정 영역과 관계없이 처짐 감지 능력의 약 50%로 초기 처짐에 대한 우수한 감지 능력을 가지는 것으로 확인되었다. 휨 하중 하에서 S-UHPFRCs의 자기감지 능력은 압축 영역에서 더 높았으나 S-UHPFRCs는 건설 현장에 적용할 자기 감지 재료로 충분하다.

This study investigated the electromechanical response of smart ultra-high performance fiber reinforced concretes (S-UHPFRCs) under flexural loading to evaluate the self-sensing capacity of S-UHPFRCs in both tension and compression region. The electrical resistivity of S-UHPFRCs under flexural continuously changed even after first cracking due to the deflection-hardening behavior of S-UHPFRCs with the appearance of multiple microcracks. As the equivalent bending stress increased, the electrical resistivity of S-UHPFRCs decreased from 976.57 to 514.05 kΩ(47.0%) as the equivalent bending stress increased in compression region, and that did from 979.61 to 682.28 kΩ(30.4%) in tension region. The stress sensitivity coefficient of S-UHPFRCs in compression and tension region was 1.709 and 1.098 %/MPa, respectively. And, the deflection sensitivity coefficient of S-UHPFRCs in compression region(30.06 %/mm) was higher than that in tension region(19.72 %/mm). The initial deflection sensing capacity of S-UHPFRCs was almost 50% of each deflection sensitivity coefficient, and it was confirmed that it has an excellent sensing capacity for the initial deflection. Although both stress- and deflection-sensing capacity of S-UHPFRCs under flexural were higher in compression region than in tension region, S-UHPFRCs are sufficient as a self-sensing material to be applied to the construction field.

키워드

과제정보

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호 RS-2022-00142566).

참고문헌

  1. An, Y. K., and Jang, K. Y. (2017), Hybrid image scanning-based concrete crack evaluation technique. Magazine of the Korea Concrete Institute, Korea Concrete Institute, 29(6), 36-41.
  2. Kim, H. J., Ahn, E. J., Cho, S. J., Shin, M. S., Sim, S. H. (2017) Comparative analysis of image binarization methods for crack identification in concrete structures. Cement and Concrete Research, Elsevier Ltd., 99, 53-61. https://doi.org/10.1016/j.cemconres.2017.04.018
  3. Choi, Y. S., Kim, J. H., Cho, H. C., Lee, C. J. (2019) Asphalt concrete pavement surface crack detection using convolutional neural network. Journal of the Korea Institute for Structural Maintenance and Inspection, 23(6), 38-44. https://doi.org/10.11112/JKSMI.2019.23.6.38
  4. Wan, K. T., and Leung, C. K. Y. (2007) Applications of a distributed fiber optic crack sensor for concrete structures, Sensors and Actuators, A: Physical, Elsevier Ltd., 135, 458-464. https://doi.org/10.1016/j.sna.2006.09.004
  5. Wolf, J., Pirskawetz, S., Zang, A. (2015) Detection of crack propagation in concrete with embedded ultrasonic sensors. Engineering Fracture Mechanics, Elsevier Ltd., 146, 161-171. https://doi.org/10.1016/j.engfracmech.2015.07.058
  6. Kim, J. H., Hong, J. Y., Kim, R. R., Woo, U. W., Choi, H. J. (2020) Development and application of IoT-based contactless ultraosonic system. Journal of the Korea Institute for Structural Maintenance and Inspection, 24(3), 70-79. https://doi.org/10.11112/JKSMI.2020.24.3.70
  7. Ahn, E. J., Kim, H. J., Sim, S. H., Shin, S. W., Shin, M. S. (2017) Principles and applications of ultrasonic-based nondestructive methods for self-healing in cementitious materials. Materials, MDPI, 10, 21-25. https://doi.org/10.3390/ma10010021
  8. Kim, M. K., Kim, D. J., An, Y.K. (2018) Electro-mechanical self-sensing response of ultra-high-performance fiber-reinforced concrete in tension. Composites Part B: Engineering, Elsevier Ltd., 134, 254-264. https://doi.org/10.1016/j.compositesb.2017.09.061
  9. Lee, S. H., Kim, S. H., Yoo, D. Y. (2018) Hybrid effects of steel fiber and carbon nanotube on self-sensing capability of ultra-high-performance concrete. Construction and Building Materials, Elsevier Ltd., 185, 530-544. https://doi.org/10.1016/j.conbuildmat.2018.07.071
  10. Le, H. V., Kim, M. K., Kim, S. U., Chung, S. Y., Kim, D. J. (2021) Enhancing self-stress sensing ability of smart ultra-high performance concretes under compression by using nano functional fillers. Journal of Building Engineering, Elsevier Ltd., 44, 102717. https://doi.org/10.1016/j.jobe.2021.102717
  11. Kang, M. S., Kang, M. S., Lee, H. J., Yim, H. J., An, Y. K. (2018) Crack initiation and temperature variation effects on self-sensing impedance responses of FRCCs. Journal of the Korea Institute for Structural Maintenance and Inspection, 22(3), 69-74. https://doi.org/10.11112/JKSMI.2018.22.3.069
  12. Bae, Y. H., Pyo, S. H. (2020) Effect of steel fiber content on structural and electrical properties of ultra high performance concrete (UHPC) sleepers. Engineering Structures, 222, 111131. https://doi.org/10.1016/j.engstruct.2020.111131
  13. Le, H. V., Kim, T. U., Khan, S., Park, J. Y., Park, J. W., Kim, S. E., Jang, Y., Kim, D. J. (2021) Development of low-cost wireless sensing system for smart ultra-high performance concrete. Sensors, MDPI, 21, 6386. https://doi.org/10.3390/s21196386
  14. Yuan, T. F., Choi, J. S., Kim, S. K., Yoon, Y. S. (2021) Assessment of steel slag and steel fiber to control electromagnetic shielding in high-strength concrete. KSCE Journal of Civil Engineering, 25(3), 920-930. https://doi.org/10.1007/s12205-021-0629-1
  15. Kim, D. J., El-Tawil, S., Naaman, A. E. (2010) Effect of matrix strength on pull-out behavior of high strength deformed steel fibers. American Concrete Institute Special Publication, ACI., 272, 135-150.
  16. Le, H. V., Lee, D. H., Kim, D. J. (2020) Effects of steel slag aggregate size and content on piezoresistiveresponses of smart ultra-high-performance fiber-reinforced concretes. Sensors and Actuators A: Physical, Elsevier Ltd., 305, 111925. https://doi.org/10.1016/j.sna.2020.111925
  17. Lee, S. Y., Le, H. V., Kim, D. J. (2019) Self-stress sensing smart concrete containing fine steel slag aggregates and steel fibers under high compressive stress. Construction and Building Materials, Elsevier, 220, 149-160. https://doi.org/10.1016/j.conbuildmat.2019.05.197
  18. Lee, S. Y., Le, H. V., Kim, M. K., Park, J. W., Kim, D. J. (2021) An innovative smart concrete anchorage with self-stress sensing capacity of prestressing stress of PS tendon. Sensors, MDPI, 21, 5251. https://doi.org/10.3390/s21155251
  19. Kim, T. U., Le, H. V., Park, J. W., Kim, S. E., Jang, Y., Kim, D. J. (2021) Development of a smart concrete block with an eccentric load sensing capacity. Construction and Building Materials, Elsevier Ltd., 306, 124881. https://doi.org/10.1016/j.conbuildmat.2021.124881
  20. Banthia, N., Djeridane, S., Pigeon, M. (1992) Electrical resistivity of carbon and steel micro-fiber reinforced cements, Cement and Concrete Research, 22, 804-814. https://doi.org/10.1016/0008-8846(92)90104-4
  21. Kim, M. K., Park, J. W., Kim, D. J. (2020) Characterizing the electro-mechanical response of self-sensing steel-fiber-reinforced cementitious composites. Construction and Building Materials, Elsevier Ltd., 240, 117954. https://doi.org/10.1016/j.conbuildmat.2019.117954
  22. Nguyen, D. L., Kim, D. J., Ryu, G. S., Koh, K. T. (2013) Size effect on flexural behavior of ultra-high-performance hybrid fiber-reinforced concrete. Composites: Part B Engineering, Elsevier Ltd., 45, 1104-1116. https://doi.org/10.1016/j.compositesb.2012.07.012
  23. Kim, M. K., Le, H. V., Kim, D. J. (2021) Electromechanical response of smart ultra-high performance concrete under external loads corresponding to different electrical measurements. Sensors, MDPI, 21, 1281. https://doi.org/10.3390/s21041281