DOI QR코드

DOI QR Code

인공 신경망 알고리즘을 활용한 플라이애시 콘크리트의 염해 내구성능 예측

The Prediction of Durability Performance for Chloride Ingress in Fly Ash Concrete by Artificial Neural Network Algorithm

  • 권성준 (한남대학교 토목환경공학과) ;
  • 윤용식 (한남대학교 토목환경공학과)
  • 투고 : 2022.09.14
  • 심사 : 2022.10.20
  • 발행 : 2022.10.30

초록

본 연구에서는 장기재령(4~6년)으로 양생된 플라이애시 콘크리트를 대상으로 촉진 염화물 이온 통과 시험을 수행하였다. 콘크리트 배합은 3수준의 물-결합재 비(0.37, 0.42, 0.47)와 2수준의 플라이애시 치환율(0, 30 %)을 가지고 있었으며, 시간 의존적으로 개선되는 통과 전하량을 정량적으로 분석하였다. 또한 실험결과를 GRU 알고리즘을 고려한 단별량 시계열 모델을 적용하여 학습하였으며, 그 예측값을 평가하였다. 통과전하량 실험 결과, 플라이애시 콘크리트는 물-결합재 비에 의한 통과 전하량의 변화가 재령이 증가함에 따라 점차 감소하였으며 OPC 콘크리트에 비하여 우수한 염해저항성을 나타내었다. 최종 평가일인 6년에서 플라이애시 콘크리트는 모든 물 결합재 비 조건에서 'Very low' 등급에 해당되는 통과 전하량이 평가되었지만, OPC 콘크리트의 경우 가장 높은 물-결합재 비를 갖는 조건에서 'Moderate' 등급을 나타내었다. 메인 알고리즘으로서 사용한 GRU 알고리즘은 시계열 데이터를 분석할 수 있고 연산 속도가 빠른 장점을 갖고 있다. 4개의 은닉층을 갖는 딥-러닝 모델이 고려되었으며 결과값은 실험값을 합리적으로 예측하고 있었다. 본 연구의 딥-러닝 모델은 단변량 시계열 특성만을 고려할 수 있는 한계점이 존재하지만 추가 연구를 통해 콘크리트의 강도 및 확산계수와 같은 다양한 특성을 고려할 수 있는 모델이 개발 중에 있다.

In this study, RCPTs (Rapid Chloride Penetration Test) were performed for fly ash concrete with curing age of 4 ~ 6 years. The concrete mixtures were prepared with 3 levels of water to binder ratio (0.37, 0.42, and 0.47) and 2 levels of substitution ratio of fly ash (0 and 30%), and the improved passed charges of chloride ion behavior were quantitatively analyzed. Additionally, the results were trained through the univariate time series models consisted of GRU (Gated Recurrent Unit) algorithm and those from the models were evaluated. As the result of the RCPT, fly ash concrete showed the reduced passed charges with period and an more improved resistance to chloride penetration than OPC concrete. At the final evaluation period (6 years), fly ash concrete showed 'Very low' grade in all W/B (water to binder) ratio, however OPC concrete showed 'Moderate' grade in the condition with the highest W/B ratio (0.47). The adopted algorithm of GRU for this study can analyze time series data and has the advantage like operation efficiency. The deep learning model with 4 hidden layers was designed, and it provided a reasonable prediction results of passed charge. The deep learning model from this study has a limitation of single consideration of a univariate time series characteristic, but it is in the developing process of providing various characteristics of concrete like strength and diffusion coefficient through additional studies.

키워드

과제정보

이 논문은 2021년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(No. NRF-2021R1A6A3A01086622).

참고문헌

  1. Metha, P. K., and Monteiro, P. M. (1993), Concrete: structure, properties, and materials, 2nd edition, prentice Hall, New-Jersey, 113-171.
  2. Broomfield, J. P. (1997), Corrosion of Steel in Concrete: Understanding, Investigation and Repair, E&FN, London. 1-15.
  3. Oh, K. S., Park, K. T., and Kwon, S. J. (2016), Evaluation of Anti-Corrosion Performance of FRP Hybrid Bar with Notch in GGBFS Concrete, Journal of the Korea Institute for Structural Maintenance and Inspection, 20(4), 51-58. https://doi.org/10.11112/JKSMI.2016.20.4.051
  4. Moon, H. Y., Kim, H. S., and Lee, S. T. (2002), Examination on the Deterioration of Concrete due to Seawater Attack, Journal of the Korean Society of Civil Engineers, 22(1A), 171-179.
  5. Kirkpatrick, T. J., Weyers, R. E., Anderson-Cook, C. M., and Sprinkel, M. M. (2002), Probabilistic Model for the Chloride-induced Corrosion Service Life of Bridge Decks, Cement and Concrete Research, 32(12), 1943-1960. https://doi.org/10.1016/S0008-8846(02)00905-5
  6. Lee, S. K., and Zielske, J. (2014), An FHWA Special Study: Post-Tensioning Tendon Grout Chloride Thresholds(FHWA-HRT-14-039), Federal Highway Administration, McLean, 7-20.
  7. Nath, P., and Sarker, P. (2011), Effect of Fly Ash on the Durability Properties of High Strength Concrete, Procedia Engineering, 14, 1149-1156. https://doi.org/10.1016/j.proeng.2011.07.144
  8. Jau, W. C., and Tsay, D. S. (1998), A Study of The Basic Engineering Properties of Slag Cement Concrete and Its Resistance to Seawater Corrosion, Cement and Concrete Research, 28(10), 1363-1371. https://doi.org/10.1016/S0008-8846(98)00117-3
  9. Thamoas, M. D. A., and Bamforth, P. B. (1999), Modelling Chloride Diffusion in Concrete Effect of Fly Ash and Slag, Cement and Concrete Research, 29(4), 487-495. https://doi.org/10.1016/S0008-8846(98)00192-6
  10. KS L 5405. (2016), Fly Ash, Korea Standard Service Network, Republic of Korea, 1-8.
  11. Bilodeau, A., Malhotra, V. M., and Golden, D. M. (1998), Mechanical properties and durability of structural lightweight concrete incorporating high-volumes of fly ash, ACI International, 178, 449-474.
  12. Borah, M. M., Dey, A., and Sil, A. (2020), Service life assessment of chloride affected bridge located in coastal region of India considering variation in the inherent structural parameters, Structures, 23, 191-203. https://doi.org/10.1016/j.istruc.2019.09.020
  13. Yoon, Y. S., Kim, T. H., and Kwon, S. J. (2020), Evaluation of Chloride Diffusion Behavior and Analysis of Probabilistic Service Life in Long Term Aged GGBFS Concrete, Journal of the Korea Institute for Structural Maintenance and Inspection, 24(3), 47-56. https://doi.org/10.11112/JKSMI.2020.24.3.47
  14. Thomas, M. D, A., and Bentz, E. C. (2002), Computer Program for Predicting the Service Life and Life-cycle Costs of Reinforced Concrete Exposed to Chlorides(Life365 Manual), SFA, Lovettsville.
  15. KCI. (2021), KDS 14 20 40-Durability Design Standard for Concrete Structure, Korea Concrete Institute, Seoul, 652-653.
  16. ACI. (2017), ACI 365.1R-17-Report on Service Life Prediction, ACI Committee 365, American Concrete Institute, Farmington Hills, 42-45.
  17. Yeh, I. C. (1998), Modeling of strength of high-performance concrete using artificial neural networks, Cement and Concrete research, 28(12), 1797-1808. https://doi.org/10.1016/S0008-8846(98)00165-3
  18. Kim, I. S., Lee, J. H., Yang, D. S., and Park, S. K. (2002), Prediction on Mix Proportion Factor and Strength of Concrete Using Neural Network, Journal of the Korean Concrete Institute, 14(4), 457-466. https://doi.org/10.4334/JKCI.2002.14.4.457
  19. Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R., and Muharemagic, E. (2015), Deep learning applications and challenges in big data analytics. Journal of big data, 2(1), 1-21. https://doi.org/10.1186/s40537-014-0007-7
  20. Chithra, S., Kumar, S. S., Chinnaraju, K., and Ashmita, F. A. (2016), A comparative study on the compressive strength prediction models for High Performance Concrete containing nano silica and copper slag using regression analysis and Artificial Neural Networks, Construction and Building Materials, 114, 528-535. https://doi.org/10.1016/j.conbuildmat.2016.03.214
  21. Lee, S. C. (2003), Prediction of concrete strength using artificial neural networks, Engineering structures, 25(7), 849-857. https://doi.org/10.1016/S0141-0296(03)00004-X
  22. Jeong, D. H. (2020), A study on prediction of concrete carbonation using deep learning, Master's thesis, Ansan: Hanyang University, Department of Architectural Engineering.
  23. Yoon, Y. S., and Kwon, S. J. (2020), Evaluation of Chloride Behavior and Service Life in Long-Term Aged FA Concrete through Probabilistic Analysis, Journal of the Korean Recycled Construction Resources Institute, 8(3), 276-285. https://doi.org/10.14190/JRCR.2020.8.3.276
  24. Berke N. S., and Hicks, M. C. (1994), Predicting Chloride Profiles in Concrete, CORROSION, 50(3), 234-239. https://doi.org/10.5006/1.3293515
  25. ASTM C 1202. (2005), Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration, American Society for Testing and Materials.
  26. KS F 2405. (2015), Standard Test Method for Compressive Strength of Concrete, KSSN, 1-3.
  27. Jeon, G. Y., Park, J. H., Jung, J. W. and Yoon, H. C. (2021), Structural Response Estimation Using Gated Recurrent Unit, Journal of the Korean Society of Hazard Mitigation, 21(3), 171-179.