Acknowledgement
이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1A2C1013782).
References
- Surh, H. B., Ryu, T. Y., Park, J. S., Ahn, E. W., Choi, C. S., Koo, J. C., Choi, J. B. and Kim, M. K. (2015), Seismic response analysis of a piping system subjected to multiple support excitations in a base isolated NPP building, Nuclear Engineering and Design, 292, 283-295. https://doi.org/10.1016/j.nucengdes.2015.06.013
- Choi, S. Y. and Choi, Y. H. (2004), Piping failure frequency analysis for the main feedwater system in domestic nuclear power plants, Journal of the Korean Nuclear Society, 36(1), 112-120.
- Bursi, O. S., Reza, M. S., Abbiati, G. and Paolacci, F. (2015), Performance-based earthquake evaluation of a full-scale petrochemical piping system, Journal of Loss Prevention in the Process Industries, 33, 10-22. https://doi.org/10.1016/j.jlp.2014.11.004
- Varelis, G. E., Karamanos, S. A. and Gresnigt, A. M. (2013), Pipe elbows under strong cyclic loading, Journal of Pressure Vessel Technology, 135(1), 011207. https://doi.org/10.1115/1.4007293
- Ravi Kiran, A., Reddy, G. R., Agrawal, M. K., Raj, M. and Sajish, S. D. (2019), Ratcheting based seismic performance assessment of a pressurized piping system: Experiments and analysis, International Journal of Pressure Vessels and Piping, 177, 103995. https://doi.org/10.1016/j.ijpvp.2019.103995
- Nakamura, I. and Kasahara, N. (2017), Excitation tests on elbow pipe specimens to investigate failure behavior under excessive seismic loads, Journal of Pressure Vessel Technology, 139(6), 061802. https://doi.org/10.1115/1.4037952
- Takahashi, K., Ando, K., Matsuo, K. and Urabe, Y. (2014), Estimation of low-cycle fatigue life of elbow pipes considering the multi-axial stress effect, Journal of Pressure Vessel Technology, 136(4), 041405. https://doi.org/10.1115/1.4026903
- Kim, S. W., Jeon, B. G., Hahm, D. G. and Kim, M. K. (2020), Ratcheting fatigue failure of a carbon steel pipe tee in a nuclear power plant using the deformation angle, Engineering Failure Analysis, 114, 104595. https://doi.org/10.1016/j.engfailanal.2020.104595
- Hasegawa, K., Miyazaki, K. and Nakamura, I. (2008), Failure mode and failure strengths for wall thinning straight pipes and elbows subjected to seismic loading, Journal of Pressure Vessel Technology, 130(1), 011404. https://doi.org/10.1115/1.2826425
- Watakabe, T., Tsukimori, K., Kitamura, S. and Morishita, M. (2016), Ultimate strength of a thin wall elbow for sodium cooled fast reactors under seismic loads, Journal of Pressure Vessel Technology, 138(2), 021801. https://doi.org/10.1115/1.4031721
- Wang, Z., Pedroni, N., Zentner, I. and Zio, E. (2018), Seismic fragility analysis with artificial neural networks: Application to nuclear power plant equipment, Engineering Structures, 162, 213-225. https://doi.org/10.1016/j.engstruct.2018.02.024
- Ma, Q., Kwon, O. S., Kwon, T. H. and Choun, Y. S. (2020), Influence of frequency content of ground motions on seismic fragility of equipment in nuclear power plant, Engineering Structures, 224, 111220. https://doi.org/10.1016/j.engstruct.2020.111220
- Koo, G. H., Kwag, S. Y. and Nam, H. S. (2021), Study on inelastic strain-based seismic fragility analysis for nuclear metal components, Energies, 14(11), 3269. https://doi.org/10.3390/en14113269
- Udagawa, M., Li, Y., Nishida, A. and Nakamura, I. (2018), Failure behavior analyses of piping system under dynamic seismic loading, International Journal of Pressure Vessels and Piping, 167, 2-10. https://doi.org/10.1016/j.ijpvp.2018.10.002
- Harun, M. F., Mohammmad, R. and Kotousov, A. (2020), Low cycle fatigue behavior of elbows with local wall thinning, Metals, 10(2), 260. https://doi.org/10.3390/met10020260
- Castiglioni, C. A. and Pucinotti, R. (2009), Failure criteria and cumulative damage models for steel components under cyclic loading, Journal of Constructional Steel Research, 65(4), 751-765. https://doi.org/10.1016/j.jcsr.2008.12.007
- Kim, S. W., Yun, D. W., Jeon, B. G. and Kim, S. D. (2021), Damage Index Evaluation Based on Dissipated Energy of SCH 40 3-Inch Carbon Steel Pipe Elbows Under Cyclic Loading, Journal of the Korea Institute for Structural Maintenance and Inspection, 25(1), 112-119. https://doi.org/10.11112/JKSMI.2021.25.1.112
- Krawinkler, H. (1987), Performance assessment of steel components, Earthquake spectra, 3(1), 27-41. https://doi.org/10.1193/1.1585417
- Gosain, N. K., Brown, R. H. and Jirsa, J. O. (1977), Shear requirements for load reversals on RC members, Journal of the Structural Division, 103(7), 1461-1476. https://doi.org/10.1061/JSDEAG.0004677
- Darwin, D. and Nmai, C. K. (1986), Energy dissipation in RC beams under cyclic load, Journal of Structural Engineering, 112(8), 1829-1846. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:8(1829)
- Castiglioni, C. A. (1999), Failure criteria and cumulative damage models for steel components under low-cycle fatigue, In Proceedings of 17th California Teachers Association Conference, Napoli.
- Park, Y. J. and Ang, A. H. S. (1985), Mechanistic seismic damage model for reinforced concrete, Journal of Structural Engineering, 111(4), 722-739. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:4(722)
- Park, Y. J., Ang, A. H. S. and Wen, Y. K. (1987), Damage-limiting aseismic design of buildings, Earthquake Spectra, 3(1), 1-26. https://doi.org/10.1193/1.1585416
- Banon, H., Biggs, J. M. and Irvine, H. M. (1981), Seismic damage in reinforced concrete frames, Journal of the Structural Division, 107(9), 1719-1729.
- Banon, H. and Veneziano, D. (1982), Seismic safety of reinforced concrete members and structures, Earthquake Engineering & Structural Dynamics, 10(2), 179-193. https://doi.org/10.1002/eqe.4290100202
- American Society of Mechanical Engineers (2004), ASME Boiler and Pressure Vessel Code, Section VIII, American Society Mechanical Engineers, New York, USA.