Acknowledgement
This work was financially supported by the Hanoi University of Civil Engineering (Vietnam).
References
- Afshari, S.S., Enayatollahi, F., Xu, X. and Liang, X. (2022), "Machine learning-based methods in structural reliability analysis: A review", Reliab. Eng. Syst. Saf., 219, 108223. https://doi.org/10.1016/j.ress.2021.108223.
- Ankireddi, S. and Y. Yang, H.T. (1996), "Simple ATMD control methodology for tall buildings subject to wind loads", J. Struct. Eng., 122(1), 83-91. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:1(83).
- Chau, K.W. (2007), "Reliability and performance-based design by artificial neural network", Adv. Eng. Softw., 38(3), 145-149. https://doi.org/10.1016/j.advengsoft.2006.09.008.
- Chojaczyk, A.A., Teixeira, A.P., Neves, L.C., Cardoso, J.B. and Soares, C.G. (2015), "Review and application of artificial neural networks models in reliability analysis of steel structures", Struct. Saf., 52, 78-89. https://doi.org/10.1016/j.strusafe.2014.09.002.
- Chopra, A.K. (2007), Dynamics of Structures, Pearson Education India.
- Cruz, C. and Miranda, E. (2017), "Dynamic tests on large cable-stayed bridge", Eng. Struct., 138, 324-3366. https://doi.org/10.1061/(ASCE)1084-0702(2001)6:1(54).
- Dang, H.V., Tran-Ngoc, H., Nguyen, T.V., Bui-Tien, T., De Roeck, G. and Nguyen, H.X. (2020), "Data-driven structural health monitoring using feature fusion and hybrid deep learning", IEEE Trans. Auto. Sci. Eng., 18(4), 2087-2103. https://doi.org/10.1109/TASE.2020.3034401.
- de Santana Gomes, W.J. (2019), "Structural reliability analysis using adaptive artificial neural networks", ASME J. Risk Uncertain. Part B, 5(4), 041004. https://doi.org/10.1115/1.4044040.
- Echard, B., Gayton, N. and Lemaire, M. (2011), "AK-MCS: An active learning reliability method combining Kriging and Monte Carlo simulation", Struct. Saf., 33(2), 145-154. https://doi.org/10.1016/j.strusafe.2011.01.002.
- Fang, Y., Chen, J. and Tee, K.F. (2013), "Analysis of structural dynamic reliability based on the probability density evolution method", Struct. Eng. Mech., 45(2), 201-209. https://doi.org/10.12989/sem.2013.45.2.201.
- Feng, J., Liu, L., Wu, D., Li, G., Beer, M. and Gao, W. (2019), "Dynamic reliability analysis using the extended support vector regression (X-SVR)", Mech. Syst. Signal Pr., 126, 368-391. https://doi.org/10.1016/j.ymssp.2019.02.027.
- Ghosh, S., Roy, A. and Chakraborty, S. (2018), "Support vector regression based metamodeling for seismic reliability analysis of structures", Appl. Math. Model., 64, 584-602. https://doi.org/10.1016/j.apm.2018.07.054.
- Gong, C. and Zhou, W. (2018), "Importance sampling-based system reliability analysis of corroding pipelines considering multiple failure modes", Reliab. Eng. Syst. Saf., 169, 199-208. https://doi.org/10.1016/j.ress.2017.08.023
- Hammersley, J. (2013), Monte Carlo Methods, Springer Science & Business Media.
- Hariri-Ardebili, M.A. and Pourkamali-Anaraki, F. (2018), "Support vector machine based reliability analysis of concrete dams", Soil Dyn. Earthq. Eng., 104, 276-295. https://doi.org/10.1016/j.soildyn.2017.09.016.
- Hochreiter, S. and Schmidhuber, J. (1997), "Long short-term memory", Neur. Comput., 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735.
- Hsu, W.C. and Ching, J. (2010), "Evaluating small failure probabilities of multiple limit states by parallel subset simulation", Prob. Eng. Mech., 25(3), 291-304. https://doi.org/10.1016/j.probengmech.2010.01.003.
- Hung, D.V., Thang, N.T. and Dat, P.X. (2021), "Probabilistic pushover analysis of reinforced concrete frame structures using dropout neural network", J. Sci. Technol. Civil Eng. (STCE)-NUCE, 15(1), 30-40. https://doi.org/10.31814/stce.nuce2021-15(1)-03.
- Khatir, S., Boutchicha, D., Le Thanh, C., Tran-Ngoc, H., Nguyen, T. and Abdel-Wahab, M. (2020), "Improved ANN technique combined with Jaya algorithm for crack identification in plates using XIGA and experimental analysis", Theor. Appl. Fract Mech., 107, 102554. https://doi.org/10.1016/j.tafmec.2020.102554.
- Khatir, S., Tiachacht, S., Le Thanh, C., Ghandourah, E., Mirjalili, S. and Wahab, M.A. (2021), "An improved Artificial Neural Network using Arithmetic Optimization Algorithm for damage assessment in FGM composite plates", Compos. Struct., 273, 114287. https://doi.org/10.1016/j.compstruct.2021.114287
- Koeppe, A., Bamer, F., Hernandez Padilla, C.A. and Markert, B. (2017), "Neural network representation of a phase-field model for brittle fracture", PAMM, 17(1), 253-254. https://doi.org/10.1002/pamm.201710096.
- Krige, D.G. (1951), "A statistical approach to some basic mine valuation problems on the Witwatersrand", J. South. Afri. Inst. Min. Metal., 52(6), 119-139.
- Lagaros, N.D. and Papadrakakis, M. (2012), "Neural network based prediction schemes of the non-linear seismic response of 3D buildings", Adv. Eng. Softw., 44(1), 92-115. https://doi.org/10.1016/j.advengsoft.2011.05.033.
- Li, M. and Wang, Z. (2020), "Deep learning for high-dimensional reliability analysis", Mech. Syst. Signal Pr., 139, 106399. https://doi.org/10.1016/j.ymssp.2019.106399.
- Lieu, Q.X., Nguyen, K.T., Dang, K.D., Lee, S., Kang, J. and Lee, J. (2022), "An adaptive surrogate model to structural reliability analysis using deep neural network", Exp. Syst. Appl., 189, 116104. https://doi.org/10.1016/j.eswa.2021.116104.
- Lim, B., Arik, S.O., Loeff, N. and Pfister, T. (2021), "Temporal fusion transformers for interpretable multi-horizon time series forecasting", Int. J. Forecast., 37(4), 1748-1764. https://doi.org/10.1016/j.ijforecast.2021.03.012.
- McKenna, F. (2011), "OpenSees: a framework for earthquake engineering simulation", Comput. Sci. Eng., 13(4), 58-66. https://doi.org/10.1109/MCSE.2011.66.
- Melchers, R. (1989), "Importance sampling in structural systems", Struct. Saf., 6(1), 3-10. https://doi.org/10.1016/0167-4730(89)90003-9.
- Mendoza-Lugo, M.A., Delgado-Hern'andez, D.J. and Morales-N'apoles, O. (2019a), "Reliability analysis of reinforced concrete vehicle bridges columns using non-parametric Bayesian networks", Eng. Struct., 188, 178-187. https://doi.org/10.1016/j.engstruct.2019.03.011.
- Nguyen-Le, D.H., Tao, Q., Nguyen, V.H., Abdel-Wahab, M. and Nguyen-Xuan, H. (2020), "A datadriven approach based on long short-term memory and hidden Markov model for crack propagation prediction", Eng. Fract. Mech., 235, 107085. https://doi.org/10.1016/j.engfracmech.2020.107085.
- Papaioannou, I., Papadimitriou, C. and Straub, D. (2016), "Sequential importance sampling for structural reliability analysis", Struct. Saf., 62, 66-75. https://doi.org/10.1016/j.strusafe.2016.06.002.
- Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., ... & Chintala, S. (2019), "Pytorch: An imperative style, high-performance deep learning library", arXiv preprint arXiv:1912.01703.
- Qin, S., Hu, J., Zhou, Y.L., Zhang, Y. and Kang, J. (2019), "Feasibility study of improved particle swarm optimization in kriging metamodel based structural model updating", Struct. Eng. Mech., 70(5), 513-524. https://doi.org/10.12989/sem.2019.70.5.513.
- Rackwitz, R. (2001), "Reliability analysis a review and some perspectives", Struct. Saf., 23(4), 365-395. https://doi.org/10.1016/S0167-4730(02)00009-7.
- Robens-Radermacher, A. and Unger, J.F. (2020), "Efficient structural reliability analysis by using a PGD model in an adaptive importance sampling schema", Adv. Model. Simul. Eng. Sci., 7(1), 1-29. https://doi.org/10.1186/s40323-020-00168-z.
- Roy, A., Manna, R. and Chakraborty, S. (2019), "Support vector regression based metamodeling for structural reliability analysis", Prob. Eng. Mech., 55, 78-89. https://doi.org/10.1016/j.probengmech.2018.11.001.
- Schueller, G. (2009), "Efficient Monte Carlo simulation procedures in structural uncertainty and reliability analysis-recent advances", Struct. Eng. Mech., 32(1), 1-20. https://doi.org/10.12989/sem.2009.32.1.001.
- Su, G., Peng, L. and Hu, L. (2017), "A Gaussian process-based dynamic surrogate model for complex engineering structural reliability analysis", Struct. Saf., 68, 97-109. https://doi.org/10.1016/j.strusafe.2017.06.003.
- Tran-Ngoc, H., Khatir, S., Ho-Khac, H., De Roeck, G., Bui-Tien, T. and Wahab, M.A. (2021), "Efficient Artificial neural networks based on a hybrid metaheuristic optimization algorithm for damage detection in laminated composite structures", Compos. Struct., 262, 113339. https://doi.org/10.1016/j.compstruct.2020.113339
- Tran-Ngoc, H., Khatir, S., Le-Xuan, T., De Roeck, G., Bui-Tien, T. and Wahab, M.A. (2020), "A novel machine-learning based on the global search techniques using vectorized data for damage detection in structures", Int. J. Eng. Sci., 157, 103376. https://doi.org/10.1016/j.ijengsci.2020.103376
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L. and Polosukhin, I. (2017), "Attention is all you need", arXiv preprint arXiv:1706.03762. Vazirizade, S.M., Nozhati, S. and Zadeh, M.A. (2017), "Seismic reliability assessment of structures using artificial neural network", J. Build. Eng., 11, 230-235. https://doi.org/10.1016/j.jobe.2017.04.001.
- Xiao, M., Zhang, J. and Gao, L. (2020), "A system active learning Kriging method for system reliability-based design optimization with a multiple response model", Reliab. Eng. Syst Saf., 199, 106935. https://doi.org/10.1016/j.ress.2020.106935.
- Zhang, J., Xiao, M. and Gao, L. (2019), "An active learning reliability method combining Kriging constructed with exploration and exploitation of failure region and subset simulation", Reliab. Eng. Syst Saf., 188, 90-102. https://doi.org/10.1016/j.ress.2019.03.002.
- Zhao, W., Shi, X. and Tang, K. (2016), "A response surface method based on sub-region of interest for structural reliability analysis", Struct. Eng. Mech., 57(4), 587-602. https://doi.org/10.12989/sem.2016.57.4.587.
- Zhou, T. and Peng, Y. (2022), "Efficient reliability analysis based on deep learning-enhanced surrogate modelling and probability density evolution method", Mech. Syst. Signal Pr., 162, 108064. https://doi.org/10.1016/j.ymssp.2021.108064
- Zuniga, M.M., Murangira, A. and Perdrizet, T. (2021), "Structural reliability assessment through surrogate based importance sampling with dimension reduction", Reliab. Eng. Syst Saf., 207, 107289. https://doi.org/10.1016/j.ress.2020.107289