DOI QR코드

DOI QR Code

COMMON FIXED POINT RESULTS FOR GENERALIZED ORTHOGONAL F-SUZUKI CONTRACTION FOR FAMILY OF MULTIVALUED MAPPINGS IN ORTHOGONAL b-METRIC SPACES

  • Leyew, Bahru Tsegaye (School of Mathematics, Statistics and Computer Science University of KwaZulu-Natal and Department of Mathematics College of Natural and Computational Sciences Addis Ababa Univeristy) ;
  • Mewomo, Oluwatosin Temitope (School of Mathematics, Statistics and Computer Science University of KwaZulu-Natal)
  • Received : 2021.12.06
  • Accepted : 2022.02.25
  • Published : 2022.10.01

Abstract

In this paper, we introduce a new class of mappings called the generalized orthogonal F-Suzuki contraction for a family of multivalued mappings in the setup of orthogonal b-metric spaces. We established the existence of some common fixed point results without using any commutativity condition for this new class of mappings in orthogonal b-metric spaces. Moreover, we illustrate and support these common fixed point results with example. The results obtained in this work generalize and extend some recent and classical related results in the existing literature.

Keywords

Acknowledgement

The research of the first author is wholly supported by the University of KwaZulu-Natal, Durban, South Africa Postdoctoral Fellowship. He is grateful for the funding and financial support.

References

  1. M. Abbas, I. Beg, and B. T. Leyew, Common fixed points of (R, α)-generalized rational multivalued contractions in R-complete b-metric spaces, Commun. Optimization Theory 2019 (2019), 14 pp.
  2. M. Abbas, T. Nazir, and V. Rakocevic, Common fixed points of family of multivalued F-contraction mappings on ordered metric spaces, Vietnam J. Math. 48 (2020), no. 1, 11-21. https://doi.org/10.1007/s10013-019-00341-x
  3. M. Abbas and B. E. Rhoades, Fixed point theorems for two new classes of multivalued mappings, Appl. Math. Lett. 22 (2009), no. 9, 1364-1368. https://doi.org/10.1016/j.aml.2009.04.002
  4. A. Aghajani, M. Abbas, and J. R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca 64 (2014), no. 4, 941-960. https://doi.org/10.2478/s12175-014-0250-6
  5. T. O. Alakoya and O. T. Mewomo, Viscosity S-iteration method with inertial technique and self-adaptive step size for split variational inclusion, equilibrium and fixed point problems, Comput. Appl. Math. 41 (2022), no. 1, Paper No. 39, 31 pp. https://doi.org/10.1007/s40314-021-01749-3
  6. H. H. Alsulami, E. Karapinar, and H. Piri, Fixed points of generalized F-Suzuki type contraction in complete b-metric spaces, Discrete Dyn. Nat. Soc. 2015 (2015), Art. ID 969726, 8 pp. https://doi.org/10.1155/2015/969726
  7. I. A. Bakhtin, The contraction mapping principle in almost metric space, in Functional analysis, No. 30 (Russian), 26-37, Ul'yanovsk. Gos. Ped. Inst., Ul'yanovsk, 1989.
  8. S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math. 3 (1922), 133-181. https://doi.org/10.4064/fm3-1-133-181
  9. I. Beg, G. Mani, and A. J. Gnanaprakasam, Fixed point of orthogonal F-Suzuki contraction mapping on O-complete b-metric spaces with applications, J. Funct. Spaces 2021 (2021), Art. ID 6692112, 12 pp. https://doi.org/10.1155/2021/6692112
  10. M. Bota, A. Molnar, and C. Varga, On Ekeland's variational principle in b-metric spaces, Fixed Point Theory 12 (2011), no. 1, 21-28.
  11. M. Cosentino and P. Vetro, Fixed point results for F-contractive mappings of HardyRogers-type, Filomat 28 (2014), no. 4, 715-722. https://doi.org/10.2298/FIL1404715C
  12. S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis 1 (1993), 5-11.
  13. M. E. Gordji and H. Habibi, Fixed point theory in generalized orthogonal metric space, J. Linear Topol. Algebra 6 (2017), no. 3, 251-260.
  14. M. E. Gordji and H. Habibi, Fixed point theory in ε-connected orthogonal metric space, Shand Commun. Math. Anal. 16 (2019), no. 1, 35-46.
  15. M. E. Gordji, M. Rameani, M. de la Sen, and Y. J. Cho, On orthogonal sets and Banach fixed point theorem, Fixed Point Theory 18 (2017), no. 2, 569-578. https://doi.org/10.24193/fpt-ro.2017.2.45
  16. A. Latif and I. Beg, Geometric fixed points for single and multivalued mappings, Demonstratio Math. 30 (1997), no. 4, 791-800. https://doi.org/10.1515/dema-1997-0410
  17. B. T. Leyew and M. Abbas, Fixed point results of generalized Suzuki-Geraghty contractions on f-orbitally complete b-metric spaces, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 79 (2017), no. 2, 113-124.
  18. A. A. Mebawondu, C. Izuchukwu, K. O. Aremu, and O. T. Mewomo, Some fixed point results for a generalized TAC-Suzuki-Berinde type F-contractions in b-metric spaces, Appl. Math. E-Notes 19 (2019), 629-653.
  19. A. A. Mebawondu and O. T. Mewomo, Some fixed point results for TAC-Suzuki contractive mappings, Commun. Korean Math. Soc. 34 (2019), no. 4, 1201-1222. https://doi.org/10.4134/CKMS.c180426
  20. A. A. Mebawondu and O. T. Mewomo, Suzuki-type fixed point results in Gb-metric spaces, Asian-Eur. J. Math. 14 (2021), no. 5, Paper No. 2150070, 20 pp. https://doi.org/10.1142/S1793557121500704
  21. J. J. Nieto and R. Rodriguez-Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005), no. 3, 223-239 (2006). https://doi.org/10.1007/s11083-005-9018-5
  22. J. J. Nieto and R. Rodriguez-Lopez, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin. (Engl. Ser.) 23 (2007), no. 12, 2205-2212. https://doi.org/10.1007/s10114-005-0769-0
  23. G. N. Ogwo, T. O. Alakoya, and O. T. Mewomo, Iterative algorithm with self-adaptive step size for approximating the common solution of variational inequality and fixed point problems, Optimization (2021) https://doi.org/10.1080/02331934.2021.1981897
  24. G. N. Ogwo, T. O. Alakoya, and O. T. Mewomo, Inertial iterative method with selfadaptive step size for finite family of split monotone variational inclusion and fixed point problems in Banach spaces, Demonstr. Math., 2021.
  25. H. Piri and P. Kumam, Some fixed point theorems concerning F-contraction in complete metric spaces, Fixed Point Theory Appl. 2014 (2014), 210, 11 pp. https://doi.org/10.1186/1687-1812-2014-210
  26. A. C. M. Ran and M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004), no. 5, 1435-1443. https://doi.org/10.1090/S0002-9939-03-07220-4
  27. I. A. Rus, A. Petrusel, and A. Sintamarian, Data dependence of the fixed point set of some multivalued weakly Picard operators, Nonlinear Anal. 52 (2003), no. 8, 1947-1959. https://doi.org/10.1016/S0362-546X(02)00288-2
  28. K. Sawangsup, W. Sintunavarat, and Y. J. Cho, Fixed point theorems for orthogonal F-contraction mappings on O-complete metric spaces, J. Fixed Point Theory Appl. 22 (2020), no. 1, Paper No. 10, 14 pp. https://doi.org/10.1007/s11784-019-0737-4
  29. M. Sgroi and C. Vetro, Multi-valued F-contractions and the solution of certain functional and integral equations, Filomat 27 (2013), no. 7, 1259-1268. https://doi.org/10.2298/FIL1307259S
  30. V. A. Uzor, T. O. Alakoya and O. T. Mewomo, Strong convergence of a self-adaptive inertial Tseng's extragradient method for pseudomonotone variational inequalities and fixed point problems, Open Math., 2022.
  31. D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 2012 (2012), 94, 6 pp. https://doi.org/10.1186/1687-1812-2012-94
  32. D. Wardowski and N. Van Dung, Fixed points of F-weak contractions on complete metric spaces, Demonstr. Math. 47 (2014), no. 1, 146-155. https://doi.org/10.2478/dema2014-0012
  33. Q. Yang and C. Bai, Fixed point theorem for orthogonal contraction of Hardy-Rogerstype mapping on O-complete metric spaces, AIMS Math. 5 (2020), no. 6, 5734-5742. https://doi.org/10.3934/math.2020368