Acknowledgement
The research of the first author is wholly supported by the University of KwaZulu-Natal, Durban, South Africa Postdoctoral Fellowship. He is grateful for the funding and financial support.
References
- M. Abbas, I. Beg, and B. T. Leyew, Common fixed points of (R, α)-generalized rational multivalued contractions in R-complete b-metric spaces, Commun. Optimization Theory 2019 (2019), 14 pp.
- M. Abbas, T. Nazir, and V. Rakocevic, Common fixed points of family of multivalued F-contraction mappings on ordered metric spaces, Vietnam J. Math. 48 (2020), no. 1, 11-21. https://doi.org/10.1007/s10013-019-00341-x
- M. Abbas and B. E. Rhoades, Fixed point theorems for two new classes of multivalued mappings, Appl. Math. Lett. 22 (2009), no. 9, 1364-1368. https://doi.org/10.1016/j.aml.2009.04.002
- A. Aghajani, M. Abbas, and J. R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca 64 (2014), no. 4, 941-960. https://doi.org/10.2478/s12175-014-0250-6
- T. O. Alakoya and O. T. Mewomo, Viscosity S-iteration method with inertial technique and self-adaptive step size for split variational inclusion, equilibrium and fixed point problems, Comput. Appl. Math. 41 (2022), no. 1, Paper No. 39, 31 pp. https://doi.org/10.1007/s40314-021-01749-3
- H. H. Alsulami, E. Karapinar, and H. Piri, Fixed points of generalized F-Suzuki type contraction in complete b-metric spaces, Discrete Dyn. Nat. Soc. 2015 (2015), Art. ID 969726, 8 pp. https://doi.org/10.1155/2015/969726
- I. A. Bakhtin, The contraction mapping principle in almost metric space, in Functional analysis, No. 30 (Russian), 26-37, Ul'yanovsk. Gos. Ped. Inst., Ul'yanovsk, 1989.
- S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math. 3 (1922), 133-181. https://doi.org/10.4064/fm3-1-133-181
- I. Beg, G. Mani, and A. J. Gnanaprakasam, Fixed point of orthogonal F-Suzuki contraction mapping on O-complete b-metric spaces with applications, J. Funct. Spaces 2021 (2021), Art. ID 6692112, 12 pp. https://doi.org/10.1155/2021/6692112
- M. Bota, A. Molnar, and C. Varga, On Ekeland's variational principle in b-metric spaces, Fixed Point Theory 12 (2011), no. 1, 21-28.
- M. Cosentino and P. Vetro, Fixed point results for F-contractive mappings of HardyRogers-type, Filomat 28 (2014), no. 4, 715-722. https://doi.org/10.2298/FIL1404715C
- S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis 1 (1993), 5-11.
- M. E. Gordji and H. Habibi, Fixed point theory in generalized orthogonal metric space, J. Linear Topol. Algebra 6 (2017), no. 3, 251-260.
- M. E. Gordji and H. Habibi, Fixed point theory in ε-connected orthogonal metric space, Shand Commun. Math. Anal. 16 (2019), no. 1, 35-46.
- M. E. Gordji, M. Rameani, M. de la Sen, and Y. J. Cho, On orthogonal sets and Banach fixed point theorem, Fixed Point Theory 18 (2017), no. 2, 569-578. https://doi.org/10.24193/fpt-ro.2017.2.45
- A. Latif and I. Beg, Geometric fixed points for single and multivalued mappings, Demonstratio Math. 30 (1997), no. 4, 791-800. https://doi.org/10.1515/dema-1997-0410
- B. T. Leyew and M. Abbas, Fixed point results of generalized Suzuki-Geraghty contractions on f-orbitally complete b-metric spaces, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 79 (2017), no. 2, 113-124.
- A. A. Mebawondu, C. Izuchukwu, K. O. Aremu, and O. T. Mewomo, Some fixed point results for a generalized TAC-Suzuki-Berinde type F-contractions in b-metric spaces, Appl. Math. E-Notes 19 (2019), 629-653.
- A. A. Mebawondu and O. T. Mewomo, Some fixed point results for TAC-Suzuki contractive mappings, Commun. Korean Math. Soc. 34 (2019), no. 4, 1201-1222. https://doi.org/10.4134/CKMS.c180426
- A. A. Mebawondu and O. T. Mewomo, Suzuki-type fixed point results in Gb-metric spaces, Asian-Eur. J. Math. 14 (2021), no. 5, Paper No. 2150070, 20 pp. https://doi.org/10.1142/S1793557121500704
- J. J. Nieto and R. Rodriguez-Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005), no. 3, 223-239 (2006). https://doi.org/10.1007/s11083-005-9018-5
- J. J. Nieto and R. Rodriguez-Lopez, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin. (Engl. Ser.) 23 (2007), no. 12, 2205-2212. https://doi.org/10.1007/s10114-005-0769-0
- G. N. Ogwo, T. O. Alakoya, and O. T. Mewomo, Iterative algorithm with self-adaptive step size for approximating the common solution of variational inequality and fixed point problems, Optimization (2021) https://doi.org/10.1080/02331934.2021.1981897
- G. N. Ogwo, T. O. Alakoya, and O. T. Mewomo, Inertial iterative method with selfadaptive step size for finite family of split monotone variational inclusion and fixed point problems in Banach spaces, Demonstr. Math., 2021.
- H. Piri and P. Kumam, Some fixed point theorems concerning F-contraction in complete metric spaces, Fixed Point Theory Appl. 2014 (2014), 210, 11 pp. https://doi.org/10.1186/1687-1812-2014-210
- A. C. M. Ran and M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004), no. 5, 1435-1443. https://doi.org/10.1090/S0002-9939-03-07220-4
- I. A. Rus, A. Petrusel, and A. Sintamarian, Data dependence of the fixed point set of some multivalued weakly Picard operators, Nonlinear Anal. 52 (2003), no. 8, 1947-1959. https://doi.org/10.1016/S0362-546X(02)00288-2
- K. Sawangsup, W. Sintunavarat, and Y. J. Cho, Fixed point theorems for orthogonal F-contraction mappings on O-complete metric spaces, J. Fixed Point Theory Appl. 22 (2020), no. 1, Paper No. 10, 14 pp. https://doi.org/10.1007/s11784-019-0737-4
- M. Sgroi and C. Vetro, Multi-valued F-contractions and the solution of certain functional and integral equations, Filomat 27 (2013), no. 7, 1259-1268. https://doi.org/10.2298/FIL1307259S
- V. A. Uzor, T. O. Alakoya and O. T. Mewomo, Strong convergence of a self-adaptive inertial Tseng's extragradient method for pseudomonotone variational inequalities and fixed point problems, Open Math., 2022.
- D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 2012 (2012), 94, 6 pp. https://doi.org/10.1186/1687-1812-2012-94
- D. Wardowski and N. Van Dung, Fixed points of F-weak contractions on complete metric spaces, Demonstr. Math. 47 (2014), no. 1, 146-155. https://doi.org/10.2478/dema2014-0012
- Q. Yang and C. Bai, Fixed point theorem for orthogonal contraction of Hardy-Rogerstype mapping on O-complete metric spaces, AIMS Math. 5 (2020), no. 6, 5734-5742. https://doi.org/10.3934/math.2020368