DOI QR코드

DOI QR Code

CIRCLE APPROXIMATION USING PARAMETRIC POLYNOMIAL CURVES OF HIGH DEGREE IN EXPLICIT FORM

  • 투고 : 2021.10.10
  • 심사 : 2021.12.30
  • 발행 : 2022.10.01

초록

In this paper we present a full circle approximation method using parametric polynomial curves with algebraic coefficients which are curvature continuous at both endpoints. Our method yields the n-th degree parametric polynomial curves which have a total number of 2n contacts with the full circle at both endpoints and the midpoint. The parametric polynomial approximants have algebraic coefficients involving rational numbers and radicals for degree higher than four. We obtain the exact Hausdorff distances between the circle and the approximation curves.

키워드

과제정보

This study was supported by research funds from Chosun University, 2021.

참고문헌

  1. Y. J. Ahn, Circle approximation by G2 Bezier curves of degree n with 2n - 1 extreme points, J. Comput. Appl. Math. 358 (2019), 20-28. https://doi.org/10.1016/j.cam.2019.02.037
  2. Y. J. Ahn and H. O. Kim, Approximation of circular arcs by Bezier curves, J. Comput. Appl. Math. 81 (1997), no. 1, 145-163. https://doi.org/10.1016/S0377-0427(97)00037-X
  3. C. de Boor, K. Hollig, and M. Sabin, High accuracy geometric Hermite interpolation, Comput. Aided Geom. Design 4 (1987), no. 4, 269-278. https://doi.org/10.1016/0167-8396(87)90002-1
  4. T. Dokken, M. Daehlen, T. Lyche, and K. Morken, Good approximation of circles by curvature-continuous Bezier curves, Comput. Aided Geom. Design 7 (1990), no. 1-4, 33-41. https://doi.org/10.1016/0167-8396(90)90019-N
  5. L. Fang, Circular arc approximation by quintic polynomial curves, Comput. Aided Geom. Design 15 (1998), no. 8, 843-861. https://doi.org/10.1016/S0167-8396(98)00019-3
  6. M. S. Floater, An O(h2n) Hermite approximation for conic sections, Comput. Aided Geom. Design 14 (1997), no. 2, 135-151. https://doi.org/10.1016/S0167-8396(96)00025-8
  7. M. Goldapp, Approximation of circular arcs by cubic polynomials, Comput. Aided Geom. Design 8 (1991), no. 3, 227-238. https://doi.org/10.1016/0167-8396(91)90007-X
  8. S. Hur and T. Kim, The best G1 cubic and G2 quartic Bezier approximations of circular arcs, J. Comput. Appl. Math. 236 (2011), no. 6, 1183-1192. https://doi.org/10.1016/j.cam.2011.08.002
  9. G. Jaklic, Uniform approximation of a circle by a parametric polynomial curve, Comput. Aided Geom. Design 41 (2016), 36-46. https://doi.org/10.1016/j.cagd.2015.10.004
  10. G. Jaklic and J. Kozak, On parametric polynomial circle approximation, Numer. Algorithms 77 (2018), no. 2, 433-450. https://doi.org/10.1007/s11075-017-0322-0
  11. G. Jaklic, J. Kozak, M. Krajnc, V. Vitrih, and E. Zagar, High-order parametric polynomial approximation of conic sections, Constr. Approx. 38 (2013), no. 1, 1-18. https://doi.org/10.1007/s00365-013-9189-z
  12. S. H. Kim and Y. J. Ahn, Approximation of circular arcs by quartic Bezier curves, Comput.-Aided Design 39 (2007), no. 6, 490-493. https://doi.org/10.1016/j.cad.2007.01.004
  13. B. Kovac and E. Zagar, Some new G1 quartic parametric approximants of circular arcs, Appl. Math. Comput. 239 (2014), 254-264. https://doi.org/10.1016/j.amc.2014.04.
  14. B.-G. Lee, Y. Park, and J. Yoo, Application of Legendre-Bernstein basis transformations to degree elevation and degree reduction, Comput. Aided Geom. Design 19 (2002), no. 9, 709-718. https://doi.org/10.1016/S0167-8396(02)00164-4
  15. Z. Liu, J. Tan, X. Chen, and L. Zhang, An approximation method to circular arcs, Appl. Math. Comput. 219 (2012), no. 3, 1306-1311. https://doi.org/10.1016/j.amc.2012.07.038
  16. K. Morken, Best approximation of circle segments by quadratic B'ezier curves, in Curves and surfaces (Chamonix-Mont-Blanc, 1990), 331-336, Academic Press, Boston, MA, 1991. https://doi.org/10.1016/B978-0-12-438660-0.50052-2
  17. M. Sabin, Subdivision surfaces, in Handbook of computer aided geometric design, 309-325, North-Holland, Amsterdam, 2002. https://doi.org/10.1016/B978-044451104-1/50013-7
  18. A. Vavpetic and E. Zagar, A general framework for the optimal approximation of circular arcs by parametric polynomial curves, J. Comput. Appl. Math. 345 (2019), 146-158. https://doi.org/10.1016/j.cam.2018.06.020
  19. A. Vavpetic and E. Zagar, On optimal polynomial geometric interpolation of circular arcs according to the Hausdorff distance, J. Comput. Appl. Math. 392 (2021), Paper No. 113491, 14 pp. https://doi.org/10.1016/j.cam.2021.113491