과제정보
The authors thank Universitas Gadjah Mada through the Directorate of Research for supporting the study under Post-doctoral Research Scheme for the WCU Program from the Ministry of Education, Culture, Research, and Technology of the Republic of Indonesia, with contract number 6164/UN.1.P.III/DIT-LIT/PT/2021.
참고문헌
- O'Hagan DT. New generation vaccine adjuvants. Encyclopedia of life sciences. Hoboken (NJ): John Wiley & Sons; 2007.
- Holmgren J, Czerkinsky C. Mucosal immunity and vaccines. Nat Med 2005;11(4 Suppl):S45-53.
- Hovav AH. Dendritic cells of the oral mucosa. Mucosal Immunol 2014;7:27-37.
- Kraan H, Vrieling H, Czerkinsky C, Jiskoot W, Kersten G, Amorij JP. Buccal and sublingual vaccine delivery. J Control Release 2014;190:580-92.
- Savelkoul HF, Ferro VA, Strioga MM, Schijns VE. Choice and design of adjuvants for parenteral and mucosal vaccines. Vaccines (Basel) 2015;3:148-71.
- Miquel-Clopes A, Bentley EG, Stewart JP, Carding SR. Mucosal vaccines and technology. Clin Exp Immunol 2019;196:205-14.
- Mestecky J, Russell MW, Elson CO. Perspectives on mucosal vaccines: is mucosal tolerance a barrier? J Immunol 2007;179:5633-8.
- Lavelle EC, Ward RW. Mucosal vaccines: fortifying the frontiers. Nat Rev Immunol 2022;22:236-50.
- Siegrist C. Vaccine immunology 2. In: Plotkin SA, Orenstein WA, Offit PA, editors. Vaccines. 5th ed. Philadelphia (PA): Saunders/Elsevier; 2008. p. 17-36.
- Coffman RL, Sher A, Seder RA. Vaccine adjuvants: putting innate immunity to work. Immunity 2010;33:492-503.
- Awate S, Babiuk LA, Mutwiri G. Mechanisms of action of adjuvants. Front Immunol 2013;4:114.
- Kim SH, Jang YS. The development of mucosal vaccines for both mucosal and systemic immune induction and the roles played by adjuvants. Clin Exp Vaccine Res 2017;6:15-21.
- Kim SH, Lee KY, Jang YS. Mucosal immune system and M cell-targeting strategies for oral mucosal vaccination. Immune Netw 2012;12:165-75.
- Ogra PL, Faden H, Welliver RC. Vaccination strategies for mucosal immune responses. Clin Microbiol Rev 2001;14:430-45.
- Murphy K. Janeway's immunobiology. 8th ed. New York (NY): Garland Science; 2012.
- Lamichhane A, Azegamia T, Kiyonoa H. The mucosal immune system for vaccine development. Vaccine 2014;32:6711-23.
- Aliberti J. Immunity and tolerance induced by intestinal mucosal dendritic cells. Mediators Inflamm 2016;2016:3104727.
- Chadwick S, Kriegel C, Amiji M. Nanotechnology solutions for mucosal immunization. Adv Drug Deliv Rev 2010;62:394-407.
- Cesta MF. Normal structure, function, and histology of mucosa-associated lymphoid tissue. Toxicol Pathol 2006;34:599-608.
- Randall TD, Mebius RE. The development and function of mucosal lymphoid tissues: a balancing act with microorganisms. Mucosal Immunol 2014;7:455-66.
- Neutra MR, Kozlowski PA. Mucosal vaccines: the promise and the challenge. Nat Rev Immunol 2006;6:148-58.
- Pollard AJ, Bijker EM. A guide to vaccinology: from basic principles to new developments. Nat Rev Immunol 2021;21:83-100.
- Depelsenaire AC, Kendall MA, Young PR, Muller DA. Introduction to vaccines and vaccination. In: Skwarczynski M, Toth I, editors. Micro- and nanotechnology in vaccine development. Oxford: Elsevier Inc.; 2017. p. 47-59.
- Migalska M, Sebastian A, Radwan J. Major histocompatibility complex class I diversity limits the repertoire of T cell receptors. Proc Natl Acad Sci 2019;116:5021-6.
- Wieczorek M, Abualrous ET, Sticht J, et al. Major histocompatibility complex (MHC) class I and MHC class II proteins: conformational plasticity in antigen presentation. Front Immunol 2017;8:292.
- Chen K, Cerutti A. Vaccination strategies to promote mucosal antibody responses. Immunity 2010;33:479-91.
- Lycke N. Recent progress in mucosal vaccine development: potential and limitations. Nat Rev Immunol 2012;12:592-605.
- Appledorn DM, Aldhamen YA, Godbehere S, Seregin SS, Amalfitano A. Sublingual administration of an adenovirus serotype 5 (Ad5)-based vaccine confirms Toll-like receptor agonist activity in the oral cavity and elicits improved mucosal and systemic cell-mediated responses against HIV antigens despite preexisting Ad5 immunity. Clin Vaccine Immunol 2011;18:150-60.
- Cuburu N, Kweon MN, Hervouet C, et al. Sublingual immunization with nonreplicating antigens induces antibody-forming cells and cytotoxic T cells in the female genital tract mucosa and protects against genital papillomavirus infection. J Immunol 2009;183:7851-9.
- Raghavan S, Ostberg AK, Flach CF, et al. Sublingual immunization protects against Helicobacter pylori infection and induces T and B cell responses in the stomach. Infect Immun 2010;78:4251-60.
- Birkhoff M, Leitz M, Marx D. Advantages of intranasal vaccination and considerations on device selection. Indian J Pharm Sci 2009;71:729-31.
- Papania MJ, Zehrung D, Jarrahian C. Technologies to improve immunization. In: Plotkin SA, Orenstein WA, Offit PA, Edwards KM, editors. Plotkin's vaccines. Philadelphia (PA): Elsevier Inc.; 2018. p. 1320-53.
- Arevalo MT, Xu Q, Paton JC, et al. Mucosal vaccination with a multicomponent adenovirus-vectored vaccine protects against Streptococcus pneumoniae infection in the lung. FEMS Immunol Med Microbiol 2009;55:346-51.
- Ainai A, van Riet E, Ito R, et al. Human immune responses elicited by an intranasal inactivated H5 influenza vaccine. Microbiol Immunol 2020;64:313-25.
- Hassan AO, Kafai NM, Dmitriev IP, et al. A single-dose intranasal ChAd vaccine protects upper and lower respiratory tracts against SARS-CoV-2. Cell 2020;183:169-84.
- De Smet R, Allais L, Cuvelier CA. Recent advances in oral vaccine development: yeast-derived β-glucan particles. Hum Vaccin Immunother 2014;10:1309-18.
- Kozlowski PA, Aldovini A. Mucosal vaccine approaches for prevention of HIV and SIV transmission. Curr Immunol Rev 2019;15:102-22.
- Serradell MC, Rupil LL, Martino RA, et al. Efficient oral vaccination by bioengineering virus-like particles with protozoan surface proteins. Nat Commun 2019;10:361.
- Barackman JD, Ott G, Pine S, O'Hagan DT. Oral administration of influenza vaccine in combination with the adjuvants LT-K63 and LT-R72 induces potent immune responses comparable to or stronger than traditional intramuscular immunization. Clin Diagn Lab Immunol 2001;8:652-7.
- Mestecky J, Moldoveanu Z, Russell MW. Immunologic uniqueness of the genital tract: challenge for vaccine development. Am J Reprod Immunol 2005;53:208-14.
- Gordon SN, Kines RC, Kutsyna G, et al. Targeting the vaginal mucosa with human papillomavirus pseudovirion vaccines delivering simian immunodeficiency virus DNA. J Immunol 2012;188:714-23.
- Johansson EL, Wassen L, Holmgren J, Jertborn M, Rudin A. Nasal and vaginal vaccinations have differential effects on antibody responses in vaginal and cervical secretions in humans. Infect Immun 2001;69:7481-6.
- Hopkins WJ, Elkahwaji J, Beierle LM, Leverson GE, Uehling DT. Vaginal mucosal vaccine for recurrent urinary tract infections in women: results of a phase 2 clinical trial. J Urol 2007;177:1349-53.
- Vela Ramirez JE, Sharpe LA, Peppas NA. Current state and challenges in developing oral vaccines. Adv Drug Deliv Rev 2017;114:116-31.
- Hebishima T, Tada S, Takeshima SN, Akaike T, Ito Y, Aida Y. Induction of antigen-specific immunity by pH-sensitive carbonate apatite as a potent vaccine carrier. Biochem Biophys Res Commun 2011;415:597-601.
- Alving CR, Peachman KK, Rao M, Reed SG. Adjuvants for human vaccines. Curr Opin Immunol 2012;24:310-5.
- Petrovsky N, Aguilar JC. Vaccine adjuvants: current state and future trends. Immunol Cell Biol 2004;82:488-96.
- De Gregorio E, Caproni E, Ulmer JB. Vaccine adjuvants: mode of action. Front Immunol 2013;4:214.
- Rhee JH, Lee SE, Kim SY. Mucosal vaccine adjuvants update. Clin Exp Vaccine Res 2012;1:50-63.
- Oscherwitz J, Hankenson FC, Yu F, Cease KB. Low-dose intraperitoneal Freund's adjuvant: toxicity and immunogenicity in mice using an immunogen targeting amyloidbeta peptide. Vaccine 2006;24:3018-25.
- Pashine A, Valiante NM, Ulmer JB. Targeting the innate immune response with improved vaccine adjuvants. Nat Med 2005;11(4 Suppl):S63-8.
- Aoshi T. Modes of action for mucosal vaccine adjuvants. Viral Immunol 2017;30:463-70.
- McGhee JR, Fujihashi K. Inside the mucosal immune system. PLoS Biol 2012;10:e1001397.
- Zeng L. Mucosal adjuvants: opportunities and challenges. Hum Vaccin Immunother 2016;12:2456-8.
- Petrovsky N. Vaccine adjuvant safety: the elephant in the room. Expert Rev Vaccines 2013;12:715-7.
- Freytag LC, Clements JD. Mucosal adjuvants. Vaccine 2005;23:1804-13.
- Clements JD, Norton EB. The mucosal vaccine adjuvant LT(R192G/L211A) or dmLT. mSphere 2018;3:e00215-18.
- Calzas C, Chevalier C. Innovative mucosal vaccine formulations against influenza A virus infections. Front Immunol 2019;10:1605.
- Duan Q, Xia P, Nandre R, Zhang W, Zhu G. Review of newly identified functions associated with the heat-labile toxin of enterotoxigenic Escherichia coli. Front Cell Infect Microbiol 2019;9:292.
- Sjokvist Ottsjo L, Flach CF, Clements J, Holmgren J, Raghavan S. A double mutant heat-labile toxin from Escherichia coli, LT(R192G/L211A), is an effective mucosal adjuvant for vaccination against Helicobacter pylori infection. Infect Immun 2013;81:1532-40.
- Buffa V, Klein K, Fischetti L, Shattock RJ. Evaluation of TLR agonists as potential mucosal adjuvants for HIV gp140 and tetanus toxoid in mice. PLoS One 2012;7:e50529.
- Toussi DN, Massari P. Immune adjuvant effect of molecularly-defined Toll-like receptor ligands. Vaccines (Basel) 2014;2:323-53.
- Bekeredjian-Ding I, Jego G. Toll-like receptors: sentries in the B-cell response. Immunology 2009;128:311-23.
- Kabelitz D. Expression and function of Toll-like receptors in T lymphocytes. Curr Opin Immunol 2007;19:39-45.
- Velasquez LS, Hjelm BE, Arntzen CJ, Herbst-Kralovetz MM. An intranasally delivered Toll-like receptor 7 agonist elicits robust systemic and mucosal responses to Norwalk virus-like particles. Clin Vaccine Immunol 2010;17:1850-8.
- Wang X, Meng D. Innate endogenous adjuvants prime to desirable immune responses via mucosal routes. Protein Cell 2015;6:170-84.
- Thompson AL, Staats HF. Cytokines: the future of intranasal vaccine adjuvants. Clin Dev Immunol 2011;2011:289597.
- Boyaka PN, McGhee JR. Cytokines as adjuvants for the induction of mucosal immunity. Adv Drug Deliv Rev 2001;51:71-9.
- Zhu J. T helper 2 (Th2) cell differentiation, type 2 innate lymphoid cell (ILC2) development and regulation of interleukin-4 (IL-4) and IL-13 production. Cytokine 2015;75:14-24.
- Zhu X, Zhu J. CD4 T helper cell subsets and related human immunological disorders. Int J Mol Sci 2020;21:8011.
- Kayamuro H, Yoshioka Y, Abe Y, et al. Interleukin-1 family cytokines as mucosal vaccine adjuvants for induction of protective immunity against influenza virus. J Virol 2010;84:12703-12.
- Poon C, Patel AA. Organic and inorganic nanoparticle vaccines for prevention of infectious diseases. Nano Express 2020;1:012001.
- He Q, Mitchell A, Morcol T, Bell SJ. Calcium phosphate nanoparticles induce mucosal immunity and protection against herpes simplex virus type 2. Clin Diagn Lab Immunol 2002;9:1021-4.
- Thomas C, Rawat A, Hope-Weeks L, Ahsan F. Aerosolized PLA and PLGA nanoparticles enhance humoral, mucosal and cytokine responses to hepatitis B vaccine. Mol Pharm 2011;8:405-15.
- Prego C, Paolicelli P, Diaz B, et al. Chitosan-based nanoparticles for improving immunization against hepatitis B infection. Vaccine 2010;28:2607-14.
- Li M, Wang Y, Sun Y, Cui H, Zhu SJ, Qiu HJ. Mucosal vaccines: strategies and challenges. Immunol Lett 2020;217:116-25.
- Bals R. Epithelial antimicrobial peptides in host defense against infection. Respir Res 2000;1:141-50.
- Dlugonska H, Grzybowski M. Mucosal vaccination: an old but still vital strategy. Ann Parasitol 2012;58:1-8.
- Skwarczynski M, Toth I. Non-invasive mucosal vaccine delivery: advantages, challenges and the future. Expert Opin Drug Deliv 2020;17:435-7.