DOI QR코드

DOI QR Code

Development of mucosal vaccine delivery: an overview on the mucosal vaccines and their adjuvants

  • Rahmi Anggraeni (PT Swayasa Prakarsa, Universitas Gadjah Mada Science Techno Campus, Division of Drugs, Medical Devices, and Functional Food) ;
  • Ika Dewi Ana (Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada) ;
  • Hevi Wihadmadyatami (Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada)
  • 투고 : 2021.12.21
  • 심사 : 2022.05.10
  • 발행 : 2022.09.30

초록

Currently, mucosal infectious diseases are still a very high global health burden, but there are few effective vaccines to prevent mucosal-borne diseases. The development of mucosal vaccines requires the selection of appropriate antigens, delivery system strategies, and adjuvants to increase vaccine efficacy but limited studies have been conducted. The aim of this review is to describe the mucosal immune system, as well as the potential for the development of vaccines and mucosal adjuvants, and their challenges. The study was conducted by applying inclusion criteria for the articles, and a review was conducted by two readers with the agreement. It was known that mucosal vaccination is a potential route to be applied in future preventive efforts through vaccination. However, limited studies have been conducted so far and limited mucosal vaccination has been approved. New technological approaches such as material development involving nano- and micro-patterning are important to intensively open and investigate the potential area of development to provide better vaccination methods.

키워드

과제정보

The authors thank Universitas Gadjah Mada through the Directorate of Research for supporting the study under Post-doctoral Research Scheme for the WCU Program from the Ministry of Education, Culture, Research, and Technology of the Republic of Indonesia, with contract number 6164/UN.1.P.III/DIT-LIT/PT/2021.

참고문헌

  1. O'Hagan DT. New generation vaccine adjuvants. Encyclopedia of life sciences. Hoboken (NJ): John Wiley & Sons; 2007. 
  2. Holmgren J, Czerkinsky C. Mucosal immunity and vaccines. Nat Med 2005;11(4 Suppl):S45-53. 
  3. Hovav AH. Dendritic cells of the oral mucosa. Mucosal Immunol 2014;7:27-37. 
  4. Kraan H, Vrieling H, Czerkinsky C, Jiskoot W, Kersten G, Amorij JP. Buccal and sublingual vaccine delivery. J Control Release 2014;190:580-92. 
  5. Savelkoul HF, Ferro VA, Strioga MM, Schijns VE. Choice and design of adjuvants for parenteral and mucosal vaccines. Vaccines (Basel) 2015;3:148-71. 
  6. Miquel-Clopes A, Bentley EG, Stewart JP, Carding SR. Mucosal vaccines and technology. Clin Exp Immunol 2019;196:205-14. 
  7. Mestecky J, Russell MW, Elson CO. Perspectives on mucosal vaccines: is mucosal tolerance a barrier? J Immunol 2007;179:5633-8. 
  8. Lavelle EC, Ward RW. Mucosal vaccines: fortifying the frontiers. Nat Rev Immunol 2022;22:236-50. 
  9. Siegrist C. Vaccine immunology 2. In: Plotkin SA, Orenstein WA, Offit PA, editors. Vaccines. 5th ed. Philadelphia (PA): Saunders/Elsevier; 2008. p. 17-36. 
  10. Coffman RL, Sher A, Seder RA. Vaccine adjuvants: putting innate immunity to work. Immunity 2010;33:492-503. 
  11. Awate S, Babiuk LA, Mutwiri G. Mechanisms of action of adjuvants. Front Immunol 2013;4:114. 
  12. Kim SH, Jang YS. The development of mucosal vaccines for both mucosal and systemic immune induction and the roles played by adjuvants. Clin Exp Vaccine Res 2017;6:15-21. 
  13. Kim SH, Lee KY, Jang YS. Mucosal immune system and M cell-targeting strategies for oral mucosal vaccination. Immune Netw 2012;12:165-75. 
  14. Ogra PL, Faden H, Welliver RC. Vaccination strategies for mucosal immune responses. Clin Microbiol Rev 2001;14:430-45. 
  15. Murphy K. Janeway's immunobiology. 8th ed. New York (NY): Garland Science; 2012. 
  16. Lamichhane A, Azegamia T, Kiyonoa H. The mucosal immune system for vaccine development. Vaccine 2014;32:6711-23. 
  17. Aliberti J. Immunity and tolerance induced by intestinal mucosal dendritic cells. Mediators Inflamm 2016;2016:3104727. 
  18. Chadwick S, Kriegel C, Amiji M. Nanotechnology solutions for mucosal immunization. Adv Drug Deliv Rev 2010;62:394-407. 
  19. Cesta MF. Normal structure, function, and histology of mucosa-associated lymphoid tissue. Toxicol Pathol 2006;34:599-608. 
  20. Randall TD, Mebius RE. The development and function of mucosal lymphoid tissues: a balancing act with microorganisms. Mucosal Immunol 2014;7:455-66. 
  21. Neutra MR, Kozlowski PA. Mucosal vaccines: the promise and the challenge. Nat Rev Immunol 2006;6:148-58. 
  22. Pollard AJ, Bijker EM. A guide to vaccinology: from basic principles to new developments. Nat Rev Immunol 2021;21:83-100. 
  23. Depelsenaire AC, Kendall MA, Young PR, Muller DA. Introduction to vaccines and vaccination. In: Skwarczynski M, Toth I, editors. Micro- and nanotechnology in vaccine development. Oxford: Elsevier Inc.; 2017. p. 47-59. 
  24. Migalska M, Sebastian A, Radwan J. Major histocompatibility complex class I diversity limits the repertoire of T cell receptors. Proc Natl Acad Sci 2019;116:5021-6. 
  25. Wieczorek M, Abualrous ET, Sticht J, et al. Major histocompatibility complex (MHC) class I and MHC class II proteins: conformational plasticity in antigen presentation. Front Immunol 2017;8:292. 
  26. Chen K, Cerutti A. Vaccination strategies to promote mucosal antibody responses. Immunity 2010;33:479-91. 
  27. Lycke N. Recent progress in mucosal vaccine development: potential and limitations. Nat Rev Immunol 2012;12:592-605. 
  28. Appledorn DM, Aldhamen YA, Godbehere S, Seregin SS, Amalfitano A. Sublingual administration of an adenovirus serotype 5 (Ad5)-based vaccine confirms Toll-like receptor agonist activity in the oral cavity and elicits improved mucosal and systemic cell-mediated responses against HIV antigens despite preexisting Ad5 immunity. Clin Vaccine Immunol 2011;18:150-60. 
  29. Cuburu N, Kweon MN, Hervouet C, et al. Sublingual immunization with nonreplicating antigens induces antibody-forming cells and cytotoxic T cells in the female genital tract mucosa and protects against genital papillomavirus infection. J Immunol 2009;183:7851-9. 
  30. Raghavan S, Ostberg AK, Flach CF, et al. Sublingual immunization protects against Helicobacter pylori infection and induces T and B cell responses in the stomach. Infect Immun 2010;78:4251-60. 
  31. Birkhoff M, Leitz M, Marx D. Advantages of intranasal vaccination and considerations on device selection. Indian J Pharm Sci 2009;71:729-31. 
  32. Papania MJ, Zehrung D, Jarrahian C. Technologies to improve immunization. In: Plotkin SA, Orenstein WA, Offit PA, Edwards KM, editors. Plotkin's vaccines. Philadelphia (PA): Elsevier Inc.; 2018. p. 1320-53. 
  33. Arevalo MT, Xu Q, Paton JC, et al. Mucosal vaccination with a multicomponent adenovirus-vectored vaccine protects against Streptococcus pneumoniae infection in the lung. FEMS Immunol Med Microbiol 2009;55:346-51. 
  34. Ainai A, van Riet E, Ito R, et al. Human immune responses elicited by an intranasal inactivated H5 influenza vaccine. Microbiol Immunol 2020;64:313-25. 
  35. Hassan AO, Kafai NM, Dmitriev IP, et al. A single-dose intranasal ChAd vaccine protects upper and lower respiratory tracts against SARS-CoV-2. Cell 2020;183:169-84. 
  36. De Smet R, Allais L, Cuvelier CA. Recent advances in oral vaccine development: yeast-derived β-glucan particles. Hum Vaccin Immunother 2014;10:1309-18. 
  37. Kozlowski PA, Aldovini A. Mucosal vaccine approaches for prevention of HIV and SIV transmission. Curr Immunol Rev 2019;15:102-22. 
  38. Serradell MC, Rupil LL, Martino RA, et al. Efficient oral vaccination by bioengineering virus-like particles with protozoan surface proteins. Nat Commun 2019;10:361. 
  39. Barackman JD, Ott G, Pine S, O'Hagan DT. Oral administration of influenza vaccine in combination with the adjuvants LT-K63 and LT-R72 induces potent immune responses comparable to or stronger than traditional intramuscular immunization. Clin Diagn Lab Immunol 2001;8:652-7. 
  40. Mestecky J, Moldoveanu Z, Russell MW. Immunologic uniqueness of the genital tract: challenge for vaccine development. Am J Reprod Immunol 2005;53:208-14. 
  41. Gordon SN, Kines RC, Kutsyna G, et al. Targeting the vaginal mucosa with human papillomavirus pseudovirion vaccines delivering simian immunodeficiency virus DNA. J Immunol 2012;188:714-23. 
  42. Johansson EL, Wassen L, Holmgren J, Jertborn M, Rudin A. Nasal and vaginal vaccinations have differential effects on antibody responses in vaginal and cervical secretions in humans. Infect Immun 2001;69:7481-6. 
  43. Hopkins WJ, Elkahwaji J, Beierle LM, Leverson GE, Uehling DT. Vaginal mucosal vaccine for recurrent urinary tract infections in women: results of a phase 2 clinical trial. J Urol 2007;177:1349-53. 
  44. Vela Ramirez JE, Sharpe LA, Peppas NA. Current state and challenges in developing oral vaccines. Adv Drug Deliv Rev 2017;114:116-31. 
  45. Hebishima T, Tada S, Takeshima SN, Akaike T, Ito Y, Aida Y. Induction of antigen-specific immunity by pH-sensitive carbonate apatite as a potent vaccine carrier. Biochem Biophys Res Commun 2011;415:597-601. 
  46. Alving CR, Peachman KK, Rao M, Reed SG. Adjuvants for human vaccines. Curr Opin Immunol 2012;24:310-5. 
  47. Petrovsky N, Aguilar JC. Vaccine adjuvants: current state and future trends. Immunol Cell Biol 2004;82:488-96. 
  48. De Gregorio E, Caproni E, Ulmer JB. Vaccine adjuvants: mode of action. Front Immunol 2013;4:214. 
  49. Rhee JH, Lee SE, Kim SY. Mucosal vaccine adjuvants update. Clin Exp Vaccine Res 2012;1:50-63. 
  50. Oscherwitz J, Hankenson FC, Yu F, Cease KB. Low-dose intraperitoneal Freund's adjuvant: toxicity and immunogenicity in mice using an immunogen targeting amyloidbeta peptide. Vaccine 2006;24:3018-25. 
  51. Pashine A, Valiante NM, Ulmer JB. Targeting the innate immune response with improved vaccine adjuvants. Nat Med 2005;11(4 Suppl):S63-8. 
  52. Aoshi T. Modes of action for mucosal vaccine adjuvants. Viral Immunol 2017;30:463-70. 
  53. McGhee JR, Fujihashi K. Inside the mucosal immune system. PLoS Biol 2012;10:e1001397. 
  54. Zeng L. Mucosal adjuvants: opportunities and challenges. Hum Vaccin Immunother 2016;12:2456-8. 
  55. Petrovsky N. Vaccine adjuvant safety: the elephant in the room. Expert Rev Vaccines 2013;12:715-7. 
  56. Freytag LC, Clements JD. Mucosal adjuvants. Vaccine 2005;23:1804-13. 
  57. Clements JD, Norton EB. The mucosal vaccine adjuvant LT(R192G/L211A) or dmLT. mSphere 2018;3:e00215-18. 
  58. Calzas C, Chevalier C. Innovative mucosal vaccine formulations against influenza A virus infections. Front Immunol 2019;10:1605. 
  59. Duan Q, Xia P, Nandre R, Zhang W, Zhu G. Review of newly identified functions associated with the heat-labile toxin of enterotoxigenic Escherichia coli. Front Cell Infect Microbiol 2019;9:292. 
  60. Sjokvist Ottsjo L, Flach CF, Clements J, Holmgren J, Raghavan S. A double mutant heat-labile toxin from Escherichia coli, LT(R192G/L211A), is an effective mucosal adjuvant for vaccination against Helicobacter pylori infection. Infect Immun 2013;81:1532-40. 
  61. Buffa V, Klein K, Fischetti L, Shattock RJ. Evaluation of TLR agonists as potential mucosal adjuvants for HIV gp140 and tetanus toxoid in mice. PLoS One 2012;7:e50529. 
  62. Toussi DN, Massari P. Immune adjuvant effect of molecularly-defined Toll-like receptor ligands. Vaccines (Basel) 2014;2:323-53. 
  63. Bekeredjian-Ding I, Jego G. Toll-like receptors: sentries in the B-cell response. Immunology 2009;128:311-23. 
  64. Kabelitz D. Expression and function of Toll-like receptors in T lymphocytes. Curr Opin Immunol 2007;19:39-45. 
  65. Velasquez LS, Hjelm BE, Arntzen CJ, Herbst-Kralovetz MM. An intranasally delivered Toll-like receptor 7 agonist elicits robust systemic and mucosal responses to Norwalk virus-like particles. Clin Vaccine Immunol 2010;17:1850-8. 
  66. Wang X, Meng D. Innate endogenous adjuvants prime to desirable immune responses via mucosal routes. Protein Cell 2015;6:170-84. 
  67. Thompson AL, Staats HF. Cytokines: the future of intranasal vaccine adjuvants. Clin Dev Immunol 2011;2011:289597. 
  68. Boyaka PN, McGhee JR. Cytokines as adjuvants for the induction of mucosal immunity. Adv Drug Deliv Rev 2001;51:71-9. 
  69. Zhu J. T helper 2 (Th2) cell differentiation, type 2 innate lymphoid cell (ILC2) development and regulation of interleukin-4 (IL-4) and IL-13 production. Cytokine 2015;75:14-24. 
  70. Zhu X, Zhu J. CD4 T helper cell subsets and related human immunological disorders. Int J Mol Sci 2020;21:8011. 
  71. Kayamuro H, Yoshioka Y, Abe Y, et al. Interleukin-1 family cytokines as mucosal vaccine adjuvants for induction of protective immunity against influenza virus. J Virol 2010;84:12703-12. 
  72. Poon C, Patel AA. Organic and inorganic nanoparticle vaccines for prevention of infectious diseases. Nano Express 2020;1:012001. 
  73. He Q, Mitchell A, Morcol T, Bell SJ. Calcium phosphate nanoparticles induce mucosal immunity and protection against herpes simplex virus type 2. Clin Diagn Lab Immunol 2002;9:1021-4. 
  74. Thomas C, Rawat A, Hope-Weeks L, Ahsan F. Aerosolized PLA and PLGA nanoparticles enhance humoral, mucosal and cytokine responses to hepatitis B vaccine. Mol Pharm 2011;8:405-15. 
  75. Prego C, Paolicelli P, Diaz B, et al. Chitosan-based nanoparticles for improving immunization against hepatitis B infection. Vaccine 2010;28:2607-14. 
  76. Li M, Wang Y, Sun Y, Cui H, Zhu SJ, Qiu HJ. Mucosal vaccines: strategies and challenges. Immunol Lett 2020;217:116-25. 
  77. Bals R. Epithelial antimicrobial peptides in host defense against infection. Respir Res 2000;1:141-50. 
  78. Dlugonska H, Grzybowski M. Mucosal vaccination: an old but still vital strategy. Ann Parasitol 2012;58:1-8. 
  79. Skwarczynski M, Toth I. Non-invasive mucosal vaccine delivery: advantages, challenges and the future. Expert Opin Drug Deliv 2020;17:435-7.