DOI QR코드

DOI QR Code

Morphological, ultrastructural, and biochemical changes induced by sodium fluoride in the tongue of adult male albino rat and the ameliorative effect of resveratrol

  • Emtethal M. El-Bestawy (Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University) ;
  • Asmaa M. Tolba (Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University) ;
  • Walaa A. Rashad (Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University)
  • 투고 : 2022.04.17
  • 심사 : 2022.06.21
  • 발행 : 2022.12.31

초록

Little knowledge is available about the effects of fluoride exposure on the tongue. This study evaluated the effects of sodium fluoride (NaF) on the tongue ultrastructure and detected the ameliorative effects of resveratrol. Forty adult albino rats were separated into 4 groups: the control group was given a balanced diet and purified water. The NaF treated group: received 10 mg/kg/d dissolved in 2.5 ml distilled water once daily for 30 days orally. The NaF+resveratrol group: received NaF 10 mg/kg/d orally together with resveratrol in a dose of 30 mg/kg daily for 30 days. The resveratrol group was subjected to resveratrol in a dose of 30 mg/kg/d by oral gavage for 30 days. Sections were stained with hematoxylin & eosin, and Masson's trichrome. Tumor necrosis factor α immunohistochemical study and electron microscopic examinations were done. The oxidative stress markers malondialdehyde, antioxidant reduced glutathione, and the total antioxidant capacity were measured. The NaF group revealed ulceration, necrotic muscle fibers, distorted papillae and a significant increase in malondialdehyde level, and a significant decrease in glutathione and the total antioxidant levels. In the NaF+resveratrol group, pathological changes were less, and the oxidant levels were decreased by the administration of resveratrol with NaF. In conclusion, NaF adversely affects the ultrastructure of the adult rat tongue and resveratrol can ameliorate this effect.

키워드

과제정보

The authors thank Zagazig Scientific and Medical Research Center (ZSMRC) for the experimental procedures.

참고문헌

  1. Gao J, Tian X, Yan X, Wang Y, Wei J, Wang X, Yan X, Song G. Selenium exerts protective effects against fluoride-induced apoptosis and oxidative stress and altered the expression of Bcl-2/caspase family. Biol Trace Elem Res 2021;199:682-92. https://doi.org/10.1007/s12011-020-02185-w
  2. Abed KF, Alwakeel SS. Mineral and microbial contents of bottled and tap water in Riyadh, Saudi Arabia. Middle East J Sci Res 2007;2:151-6.
  3. Pendrys DG. Fluoride ingestion and oral health. Nutrition 2001;17:979-80. https://doi.org/10.1016/S0899-9007(01)00686-4
  4. Al-hayani A, Elshal EB, Aal IHA, Al-Shammeri E. Does vitamin E protect against sodium fluoride toxicity on the cerebellar cortex of albino rats? Middle East J Sci Res 2013;16:1019-26.
  5. Fung KF, Zhang ZQ, Wong JWC, Wong MH. Fluoride contents in tea and soil from tea plantations and the release of fluoride into tea liquor during infusion. Environ Pollut 1999;104:197-205. https://doi.org/10.1016/S0269-7491(98)00187-0
  6. Jacinto-Aleman LF, Hernandez-Guerrero JC, Trejo-Solis C, Jimenez-Farfan MD, Fernandez-Presas AM. In vitro effect of sodium fluoride on antioxidative enzymes and apoptosis during murine odontogenesis. J Oral Pathol Med 2010;39:709-14. https://doi.org/10.1111/j.1600-0714.2010.00918.x
  7. Rahmani S, Rezaei M. Toxicity of fluoride on isolated rat liver mitochondria. J Fluor Chem 2020;239:109636.
  8. O'Neil MJ, Smith A, Heckelman PE, Budavari S. The Merck index: an encyclopedia of chemicals, drugs, and biologicals. 13th ed. Whitehouse Station: Merck; 2001.
  9. Ahmed SK, Kalleny NK, El Moneim Attia AA, Elkateb LA. The possible protective role of chromium chloride against sodium fluoride-induced changes in the structure of the cerebellar cortex of the adult male albino rat. Egypt J Histol 2015;38:402-14. https://doi.org/10.1097/01.EHX.0000464785.45283.40
  10. Mondal K, Nath S. Fluoride contamination on aquatic organisms and human body at Purulia and Bankura district of West Bengal, India. Bull Environ Pharmacol Life Sci 2015;4:112-4.
  11. Dhar V, Bhatnagar M. Physiology and toxicity of fluoride. Indian J Dent Res 2009;20:350-5. https://doi.org/10.4103/0970-9290.57379
  12. Yan X, Yang X, Hao X, Ren Q, Gao J, Wang Y, Chang N, Qiu Y, Song G. Sodium fluoride induces apoptosis in H9c2 cardiomyocytes by altering mitochondrial membrane potential and intracellular ROS level. Biol Trace Elem Res 2015;166:210-5. https://doi.org/10.1007/s12011-015-0273-z
  13. Al Badawi MH, Mahmoud OM, Salem NA. Therapeutic potential of omega-3 against sodium fluoride toxicity on the cerebellar cortex of adult male albino rats. Egypt J Histol 2016;39:170-8. https://doi.org/10.1097/01.EHX.0000490005.17183.4f
  14. Basha MP, Begum S, Madhusudhan N. Antioxidants in the management of fluoride induced neural oxidative stress in developing rats. Int J Pharm Sci Res 2014;5:201-6.
  15. El-Khair DMA, El-Safti FENA, El-Habeby MM, El-Kholy WB, El-Sherif NM. Effect of sodium fluoride on the grey matter of spinal cord in the albino rat and the protective role of green tea extract. Anatomy 2016;10:114-33. https://doi.org/10.2399/ana.16.017
  16. Kanagaraj VV, Panneerselvam L, Govindarajan V, Ameeramja J, Perumal E. Caffeic acid, a phyto polyphenol mitigates fluoride induced hepatotoxicity in rats: a possible mechanism. Biofactors 2015;41:90-100. https://doi.org/10.1002/biof.1203
  17. Shivarajashankara Y, Shivashankara A, Bhat PG, Rao SH. Effect of fluoride intoxication on lipid peroxidation and antioxidant systems in rats. Fluoride 2001;34:108-13.
  18. Oliveira BV, Barros Silva PG, Nojosa Jde S, Brizeno LA, Ferreira JM, Sousa FB, Mota MR, Alves AP. TNF-alpha expression, evaluation of collagen, and TUNEL of Matricaria recutita L. extract and triamcinolone on oral ulcer in diabetic rats. J Appl Oral Sci 2016;24:278-90.
  19. Chamani G, Zarei MR, Mehrabani M, Mehdavinezhad A, Vahabian M, Ahmadi-Motamayel F. Evaluation of honey as a topical therapy for intraoral wound healing in rats. Wounds 2017;29:80-6.
  20. Al-Ayed MS, Asaad AM, Qureshi MA, Attia HG, AlMarrani AH. Antibacterial activity of Salvadora persica L. (Miswak) extracts against multidrug resistant bacterial clinical isolates. Evid Based Complement Alternat Med 2016;2016:7083964.
  21. Nalagoni CSR, Karnati PR. Protective effect of resveratrol against neuronal damage through oxidative stress in cerebral hemisphere of aluminum and fluoride treated rats. Interdiscip Toxicol 2016;9:78-82.
  22. Zeng XX, Deng J, Xiang J, Dong YT, Cao K, Liu XH, Chen D, Ran LY, Yang Y, Guan ZZ. Resveratrol attenuated the increased level of oxidative stress in the brains and the deficit of learning and memory of rats with chronic fluorosis. Fluoride 2019;52:149-60.
  23. Agustina F, Sofro ZM, Partadiredja G. Subchronic administration of high-dose sodium fluoride causes deficits in cerebellar Purkinje cells but not motor coordination of rats. Biol Trace Elem Res 2019;188:424-33. https://doi.org/10.1007/s12011-018-1420-0
  24. Sharma C, Suhalka P, Bhatnagar M. Curcumin and resveratrol rescue cortical-hippocampal system from chronic fluoride-induced neurodegeneration and enhance memory retrieval. Int J Neurosci 2018;128:1007-21. https://doi.org/10.1080/00207454.2018.1458727
  25. Suvarna SK, Layton C, Bancroft JD. Bancroft's theory and practice of histological techniques. 7th ed. Philadelphia: Churchill Livingstone; 2013. p. 173-214.
  26. Rau E, Gostev A, Shiqiu Z, Phang D, Chan D, Thong D, Wong W. Comparative analysis of scanning electron microscopy techniques for semiconductors: electron-beam-induced potential method, single-contact electron-beam-induced current method, and thermoacoustic detection. Russ Microelectron 2001;30:207-18.
  27. Ayache J, Beaunier L, Boumendil J, Ehret G, Laub D. Sample preparation handbook for transmission electron microscopy techniques. New York: Springer; 2010.
  28. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 2004;37:277-85. https://doi.org/10.1016/j.clinbiochem.2003.11.015
  29. Mistretta CM, Bradley RM. The fungiform papilla is a complex, multimodal, oral sensory organ. Curr Opin Physiol 2021;20:165-73.
  30. Hsu PC, Wu HK, Huang YC, Chang HH, Chen YP, Chiang JY, Lo LC. Gender- and age-dependent tongue features in a community-based population. Medicine (Baltimore) 2019;98:e18350.
  31. Abayomi TA, Ofusori DA, Ayoka OA, Odukoya SA, Omotoso EO, Amegor FO, Ajayi SA, Ojo GB, Oluwayinka OP. A comparative histological study of the tongue of rat (Rattus norvegicus), bat (Eidolon Helvum) and pangolin (Manis tricuspis). Int J Morphol 2009;27:1111-9.
  32. Maynard RL, Downes N. Alimentary canal or gastrointestinal tract. In: Maynard RL, Downes N, editors. Anatomy and Histology of the Laboratory Rat in Toxicology and Biomedical Research. London: Academic Press; 2019. p.147-58.
  33. Osman HI, Abd El Razek N, Koura SA. Histological changes of rat lingual papillae due to chromium toxicity and the protective role of vitamin E. Egypt Dent J 2006;52:193-200.
  34. Yang M, Zhao HP, Yang J. [Effect of toothpaste containing emulsifier 30 and sodium lauryl sulfate surfactant on the integrity of oral epithelium]. Shanghai Kou Qiang Yi Xue 2021;30:312-5. Chinese.
  35. Song C, Fu B, Zhang J, Zhao J, Yuan M, Peng W, Zhang Y, Wu H. Sodium fluoride induces nephrotoxicity via oxidative stress-regulated mitochondrial SIRT3 signaling pathway. Sci Rep 2017;7:672. Erratum in: Sci Rep 2018;8:7737.
  36. Kaeffer B. Exfoliated epithelial cells: potentials to explore gastrointestinal maturation of preterm infants. Rev Bras Saude Matern Infant 2010;10:13-24. https://doi.org/10.1590/S1519-38292010000100002
  37. Schwab M. Encyclopedia of Cancer. Berlin: Springer-Verlag; 2011.
  38. Maurer JK, Cheng MC, Boysen BG, Anderson RL. Two-year carcinogenicity study of sodium fluoride in rats. J Natl Cancer Inst 1990;82:1118-26. https://doi.org/10.1093/jnci/82.13.1118
  39. Lu Y, Luo Q, Cui H, Deng H, Kuang P, Liu H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Sodium fluoride causes oxidative stress and apoptosis in the mouse liver. Aging (Albany NY) 2017;9:1623-39.
  40. Aronson JK. Tumor necrosis factor alfa. In: Aronson JK, editor. Meyler's Side Effects of Drugs. 16th ed. Amsterdam: Elsevier; 2016. p.230-32.
  41. Fujita M, Shannon JM, Morikawa O, Gauldie J, Hara N, Mason RJ. Overexpression of tumor necrosis factor-alpha diminishes pulmonary fibrosis induced by bleomycin or transforming growth factor-beta. Am J Respir Cell Mol Biol 2003;29:669-76. https://doi.org/10.1165/rcmb.2002-0046OC
  42. Adkins EA, Brunst KJ. Impacts of fluoride neurotoxicity and mitochondrial dysfunction on cognition and mental health: a literature review. Int J Environ Res Public Health 2021;18:12884.
  43. Peng W, Xu S, Zhang J, Zhang Y. Vitamin C attenuates sodium fluoride-induced mitochondrial oxidative stress and apoptosis via Sirt1-SOD2 pathway in F9 cells. Biol Trace Elem Res 2019;191:189-98. https://doi.org/10.1007/s12011-018-1599-0
  44. Suen DF, Norris KL, Youle RJ. Mitochondrial dynamics and apoptosis. Genes Dev 2008;22:1577-90. https://doi.org/10.1101/gad.1658508
  45. Miyazono Y, Hirashima S, Ishihara N, Kusukawa J, Nakamura KI, Ohta K. Uncoupled mitochondria quickly shorten along their long axis to form indented spheroids, instead of rings, in a fission-independent manner. Sci Rep 2018;8:350.
  46. Arnoult D. Mitochondrial fragmentation in apoptosis. Trends Cell Biol 2007;17:6-12.
  47. Davis MA, Jeffery EH. Organelle biochemistry and regulation of cell death. In: Haschek WM, Rousseaux CG, Wallig MA, editors. Handbook of Toxicologic Pathology. 2nd ed. Orlando: Academic Press; 2002. p.67-81.
  48. Mittal M, Flora SJ. Effects of individual and combined exposure to sodium arsenite and sodium fluoride on tissue oxidative stress, arsenic and fluoride levels in male mice. Chem Biol Interact 2006;162:128-39.
  49. Holley AK, Bakthavatchalu V, Velez-Roman JM, St Clair DK. Manganese superoxide dismutase: guardian of the powerhouse. Int J Mol Sci 2011;12:7114-62. https://doi.org/10.3390/ijms12107114
  50. Hassan HA, Abdel-Aziz AF. Evaluation of free radical-scavenging and anti-oxidant properties of black berry against fluoride toxicity in rats. Food Chem Toxicol 2010;48:1999-2004. https://doi.org/10.1016/j.fct.2010.05.018
  51. Nabavi SM, Nabavi SF, Eslami S, Moghaddam AH. In vivo protective effects of quercetin against sodium fluoride-induced oxidative stress in the hepatic tissue. Food Chem 2012;132:931-5. https://doi.org/10.1016/j.foodchem.2011.11.070
  52. Panneerselvam L, Subbiah K, Arumugam A, Senapathy JG. Ferulic acid modulates fluoride-induced oxidative hepatotoxicity in male Wistar rats. Biol Trace Elem Res 2013;151:85-91. https://doi.org/10.1007/s12011-012-9534-2
  53. Powers SK, Smuder AJ, Judge AR. Oxidative stress and disuse muscle atrophy: cause or consequence? Curr Opin Clin Nutr Metab Care 2012;15:240-5. https://doi.org/10.1097/MCO.0b013e328352b4c2
  54. Ranneh Y, Ali F, Akim AM, Hamid HA, Khazaai H, Fadel A. Crosstalk between reactive oxygen species and pro-inflammatory markers in developing various chronic diseases: a review. Appl Biol Chem 2017;60:327-38.
  55. Johar D, Roth JC, Bay GH, Walker JN, Kroczak TJ, Los M. Inflammatory response, reactive oxygen species, programmed (necrotic-like and apoptotic) cell death and cancer. Rocz Akad Med Bialymst 2004;49:31-9.
  56. Amaral SL, Azevedo LB, Buzalaf MAR, Fabricio MF, Fernandes MS, Valentine RA, Maguire A, Zohoori FV. Effect of chronic exercise on fluoride metabolism in fluorosis-susceptible mice exposed to high fluoride. Sci Rep 2018;8:3211.
  57. Vohra P. Fluoride tolerance of Japanese quail. Poult Sci 1973;52:391-3. https://doi.org/10.3382/ps.0520391
  58. Tunali-Akbay T, Sehirli O, Ercan F, Sener G. Resveratrol protects against methotrexate-induced hepatic injury in rats. J Pharm Pharm Sci 2010;13:303-10.
  59. Atmaca N, Atmaca HT, Kanici A, Anteplioglu T. Protective effect of resveratrol on sodium fluoride-induced oxidative stress, hepatotoxicity and neurotoxicity in rats. Food Chem Toxicol 2014;70:191-7. https://doi.org/10.1016/j.fct.2014.05.011
  60. Pignet AL, Schellnegger M, Hecker A, Kohlhauser M, Kotzbeck P, Kamolz LP. Resveratrol-induced signal transduction in wound healing. Int J Mol Sci 2021;22:12614.
  61. Alarcon de la Lastra C, Villegas I, Martin AR. Resveratrol as an Antioxidant. In: Aggarwal BB, Shishodia S, editors. Resveratrol in Health and Disease. Boca Raton: CRC Press; 2006. p.33-56.
  62. Konyalioglu S, Armagan G, Yalcin A, Atalayin C, Dagci T. Effects of resveratrol on hydrogen peroxide-induced oxidative stress in embryonic neural stem cells. Neural Regen Res 2013;8:485-95.
  63. Kasdallah-Grissa A, Mornagui B, Aouani E, Hammami M, El May M, Gharbi N, Kamoun A, El-Fazaa S. Resveratrol, a red wine polyphenol, attenuates ethanol-induced oxidative stress in rat liver. Life Sci 2007;80:1033-9. https://doi.org/10.1016/j.lfs.2006.11.044
  64. Kolouchova-Hanzlikova I, Melzoch K, Filip V, Smidrkal J. Rapid method for resveratrol determination by HPLC with electrochemical and UV detections in wines. Food Chem 2004;87:151-8. https://doi.org/10.1016/j.foodchem.2004.01.028
  65. Kong F, Zhang R, Zhao X, Zheng G, Wang Z, Wang P. Resveratrol raises in vitro anticancer effects of paclitaxel in NSCLC cell line A549 through COX-2 expression. Korean J Physiol Pharmacol 2017;21:465-74. https://doi.org/10.4196/kjpp.2017.21.5.465
  66. Zhou ZX, Mou SF, Chen XQ, Gong LL, Ge WS. Anti-inflammatory activity of resveratrol prevents inflammation by inhibiting NF-κB in animal models of acute pharyngitis. Mol Med Rep 2018;17:1269-74.
  67. Duntas LH. Resveratrol and its impact on aging and thyroid function. J Endocrinol Invest 2011;34:788-92.
  68. Chen TT, Peng S, Wang Y, Hu Y, Shen Y, Xu Y, Yin J, Liu C, Cao J. Improvement of mitochondrial activity and fibrosis by resveratrol treatment in mice with Schistosoma japonicum infection. Biomolecules 2019;9:658.
  69. Wang J, He F, Chen L, Li Q, Jin S, Zheng H, Lin J, Zhang H, Ma S, Mei J, Yu J. Resveratrol inhibits pulmonary fibrosis by regulating miR-21 through MAPK/AP-1 pathways. Biomed Pharmacother 2018;105:37-44.
  70. Robb EL, Moradi F, Maddalena LA, Valente AJF, Fonseca J, Stuart JA. Resveratrol stimulates mitochondrial fusion by a mechanism requiring mitofusin-2. Biochem Biophys Res Commun 2017;485:249-54. https://doi.org/10.1016/j.bbrc.2017.02.102
  71. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 2006;127:1109-22. https://doi.org/10.1016/j.cell.2006.11.013
  72. Abolaji AO, Ajala VO, Adigun JO, Adedara IA, Kinyi HW, Farombi EO. Protective role of resveratrol, a natural polyphenol, in sodium fluoride-induced toxicity in Drosophila melanogaster. Exp Biol Med (Maywood) 2019;244:1688-94. https://doi.org/10.1177/1535370219890334