DOI QR코드

DOI QR Code

Antimicrobial peptide nisin induces spherical distribution of macropinocytosis-like cytokeratin 5 and cytokeratin 17 following immediate derangement of the cell membrane

  • Norio Kitagawa (Oral Medicine Research Center, Fukuoka Gakuen)
  • Received : 2021.08.22
  • Accepted : 2021.10.19
  • Published : 2022.06.30

Abstract

The anti-aging effects of Lactococcus lactis are extensively investigated. Nisin is an antimicrobial peptide produced by L. lactis subsp. lactis. We previously reported that 24-hour nisin treatment disturbs the intermediate filament distribution in human keratinocytes. Additionally, we showed that the ring-like distribution of the intermediate filament proteins, cytokeratin (CK) 5 and CK17 is a marker of nisin action. However, two questions remained unanswered: 1) What do the CK5 and CK17 ring-like distributions indicate? 2) Is nisin ineffective under the experimental conditions wherein CK5 and CK17 do not exhibit a ring-like distribution? Super resolution microscopy revealed that nisin treatment altered CK5 and CK17 distribution, making them spherical rather than ring-like, along with actin incorporation. This spherical distribution was not induced by the suppression of endocytosis. The possibility of a macropinocytosis-like phenomenon was indicated, because the spherical distribution was >1 ㎛ in diameter and the spherical distribution was suppressed by macropinocytosis inhibiting conditions, such as the inclusion of an actin polymerization inhibitor and cell migration. Even when the spherical distribution of CK5 and CK17 was not induced, nisin induced derangement of the cell membrane. Nisin treatment for 30 minutes deranged the regular arrangement of the lipid layer (flip-flop); the transmembrane structure of the CK5-desmosome or CK17-desmosome protein complex was disturbed. To the best of our knowledge, this is the first study to report that CK5 and CK17 in a spherical distribution could be involved in a macropinosome-like structure, under certain conditions of nisin action in keratinocytes.

Keywords

Acknowledgement

This study was supported by JSPS KAKENHI Grants (numbers 15K21564 and 17K18302), the Private University Research Branding Project to Fukuoka College of Health Science from the Ministry of Education, and a grant from the Oral Medicine Research Center of Fukuoka Gakuen.

References

  1. Kimoto-Nira H, Suzuki C, Kobayashi M, Sasaki K, Kurisaki J, Mizumachi K. Anti-ageing effect of a lactococcal strain: analysis using senescence-accelerated mice. Br J Nutr 2007;98:1178-86.
  2. Kimoto-Nira H, Nagakura Y, Kodama C, Shimizu T, Okuta M, Sasaki K, Koikawa N, Sakuraba K, Suzuki C, Suzuki Y. Effects of ingesting milk fermented by Lactococcus lactis H61 on skin health in young women: a randomized double-blind study. J Dairy Sci 2014;97:5898-903.
  3. Sugimura T, Jounai K, Ohshio K, Suzuki H, Kirisako T, Sugihara Y, Fujiwara D. Long-term administration of pDC-Stimulative Lactococcus lactis strain decelerates senescence and prolongs the lifespan of mice. Int Immunopharmacol 2018;58:166-72.
  4. Pan D, Mei X. Antioxidant activity of an exopolysaccharide purified from Lactococcus lactis subsp. lactis 12. Carbohydr Polym 2010;80:908-14.
  5. Holo H, Nilssen O, Nes IF. Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: isolation and characterization of the protein and its gene. J Bacteriol 1991;173:3879-87.
  6. Bromberg R, Moreno I, Delboni RR, Cintra HC, Oliveira PTV. Characteristics of the bacteriocin produced by Lactococcus lactis subsp. cremoris CTC 204 and the effect of this compound on the mesophilic bacteria associated with raw beef. World J Microbiol Biotechnol 2005;21:351-8.
  7. Zendo T, Koga S, Shigeri Y, Nakayama J, Sonomoto K. Lactococcin Q, a novel two-peptide bacteriocin produced by Lactococcus lactis QU 4. Appl Environ Microbiol 2006;72:3383-9.
  8. Kitagawa N, Otani T, Inai T. Nisin, a food preservative produced by Lactococcus lactis, affects the localization pattern of intermediate filament protein in HaCaT cells. Anat Sci Int 2019;94:163-71.
  9. Breukink E, de Kruijff B. The lantibiotic nisin, a special case or not? Biochim Biophys Acta 1999;1462:223-34.
  10. Gupta SM, Aranha CC, Bellare JR, Reddy KV. Interaction of contraceptive antimicrobial peptide nisin with target cell membranes: implications for use as vaginal microbicide. Contraception 2009;80:299-307.
  11. Mouritzen MV, Andrea A, Qvist K, Poulsen SS, Jenssen H. Immunomodulatory potential of Nisin A with application in wound healing. Wound Repair Regen 2019;27:650-60.
  12. Ross MH, Pawlina W. Histology: a text and atlas. 7th ed. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins Health; 2015.
  13. Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 1988;106:761-71.
  14. Bikle DD, Xie Z, Tu CL. Calcium regulation of keratinocyte differentiation. Expert Rev Endocrinol Metab 2012;7:461-72.
  15. Oda Y, Tu CL, Pillai S, Bikle DD. The calcium sensing receptor and its alternatively spliced form in keratinocyte differentiation. J Biol Chem 1998;273:23344-52.
  16. Torma H. Regulation of keratin expression by retinoids. Dermatoendocrinol 2011;3:136-40.
  17. Tan KK, Salgado G, Connolly JE, Chan JK, Lane EB. Characterization of fetal keratinocytes, showing enhanced stem celllike properties: a potential source of cells for skin reconstruction. Stem Cell Reports 2014;3:324-38.
  18. Kitagawa N, Inai Y, Higuchi Y, Iida H, Inai T. Inhibition of JNK in HaCaT cells induced tight junction formation with decreased expression of cytokeratin 5, cytokeratin 17 and desmoglein 3. Histochem Cell Biol 2014;142:389-99.
  19. Kolsch A, Windoffer R, Leube RE. Actin-dependent dynamics of keratin filament precursors. Cell Motil Cytoskeleton 2009;66:976-85.
  20. Windoffer R, Borchert-Stuhltrager M, Leube RE. Desmosomes: interconnected calcium-dependent structures of remarkable stability with significant integral membrane protein turnover. J Cell Sci 2002;115(Pt 8):1717-32.
  21. He Z, Fan J, Kang L, Lu J, Xue Y, Xu P, Xu T, Chen L. Ca2+ triggers a novel clathrin-independent but actin-dependent fast endocytosis in pancreatic beta cells. Traffic 2008;9:910-23.
  22. De La Cruz N, Knebel-Morsdorf D. Endocytic internalization of herpes simplex virus 1 in human keratinocytes at low temperature. J Virol 2021;95:e02195-20.
  23. Wu XS, McNeil BD, Xu J, Fan J, Xue L, Melicoff E, Adachi R, Bai L, Wu LG. Ca(2+) and calmodulin initiate all forms of endocytosis during depolarization at a nerve terminal. Nat Neurosci 2009;12:1003-10.
  24. Margiotta A, Bucci C. Role of intermediate filaments in vesicular traffic. Cells 2016;5:20.
  25. Mercer J, Helenius A. Virus entry by macropinocytosis. Nat Cell Biol 2009;11:510-20.
  26. Lim JP, Gleeson PA. Macropinocytosis: an endocytic pathway for internalising large gulps. Immunol Cell Biol 2011;89:836-43.
  27. Kanlaya R, Sintiprungrat K, Chaiyarit S, Thongboonkerd V. Macropinocytosis is the major mechanism for endocytosis of calcium oxalate crystals into renal tubular cells. Cell Biochem Biophys 2013;67:1171-9.
  28. King JS, Kay RR. The origins and evolution of macropinocytosis. Philos Trans R Soc Lond B Biol Sci 2019;374:20180158.
  29. Veltman DM. Drink or drive: competition between macropinocytosis and cell migration. Biochem Soc Trans 2015;43:129-32.
  30. Imura Y, Choda N, Matsuzaki K. Magainin 2 in action: distinct modes of membrane permeabilization in living bacterial and mammalian cells. Biophys J 2008;95:5757-65.
  31. Henriques ST, Melo MN, Castanho MA. Cell-penetrating peptides and antimicrobial peptides: how different are they? Biochem J 2006;399:1-7.
  32. Kordel M, Sahl HG. Susceptibility of bacterial, eukaryotic and artificial membranes to the disruptive action of the cationic peptides Pep 5 and nisin. FEMS Microbiol Lett 1986;34:139-44.
  33. Nakase I, Niwa M, Takeuchi T, Sonomura K, Kawabata N, Koike Y, Takehashi M, Tanaka S, Ueda K, Simpson JC, Jones AT, Sugiura Y, Futaki S. Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement. Mol Ther 2004;10:1011-22.
  34. Takeuchi T, Futaki S. Current understanding of direct translocation of arginine-rich cell-penetrating peptides and its internalization mechanisms. Chem Pharm Bull (Tokyo) 2016;64:1431-7.
  35. Poon GM, Gariepy J. Cell-surface proteoglycans as molecular portals for cationic peptide and polymer entry into cells. Biochem Soc Trans 2007;35(Pt 4):788-93.
  36. Nakase I, Tadokoro A, Kawabata N, Takeuchi T, Katoh H, Hiramoto K, Negishi M, Nomizu M, Sugiura Y, Futaki S. Interaction of arginine-rich peptides with membrane-associated proteoglycans is crucial for induction of actin organization and macropinocytosis. Biochemistry 2007;46:492-501.
  37. Nakase I, Osaki K, Tanaka G, Utani A, Futaki S. Molecular interplays involved in the cellular uptake of octaarginine on cell surfaces and the importance of syndecan-4 cytoplasmic V domain for the activation of protein kinase Cα. Biochem Biophys Res Commun 2014;446:857-62.
  38. Schmidt N, Mishra A, Lai GH, Wong GC. Arginine-rich cell-penetrating peptides. FEBS Lett 2010;584:1806-13.
  39. Palm-Apergi C, Lorents A, Padari K, Pooga M, Hallbrink M. The membrane repair response masks membrane disturbances caused by cell-penetrating peptide uptake. FASEB J 2009;23:214-23.
  40. Barnes L, Ino F, Jaunin F, Saurat JH, Kaya G. Inhibition of putative hyalurosome platform in keratinocytes as a mechanism for corticosteroid-induced epidermal atrophy. J Invest Dermatol 2013;133:1017-26.
  41. Zemljic Jokhadar S, Stojkovic B, Vidak M, Sorcan T, Liovic M, Gouveia M, Travasso RDM, Derganc J. Cortical stiffness of keratinocytes measured by lateral indentation with optical tweezers. PLoS One 2020;15:e0231606.
  42. Lichti U, Anders J, Yuspa SH. Isolation and short-term culture of primary keratinocytes, hair follicle populations and dermal cells from newborn mice and keratinocytes from adult mice for in vitro analysis and for grafting to immunodeficient mice. Nat Protoc 2008;3:799-810.
  43. Yang YW, Zhang CN, Cao YJ, Qu YX, Li TY, Yang TG, Geng D, Sun YK. Bidirectional regulation of i-type lysozyme on cutaneous wound healing. Biomed Pharmacother 2020;131:110700.
  44. Otani T, Matsuda M, Mizokami A, Kitagawa N, Takeuchi H, Jimi E, Inai T, Hirata M. Osteocalcin triggers Fas/FasL-mediated necroptosis in adipocytes via activation of p300. Cell Death Dis 2018;9:1194.
  45. Abe T, Kitagawa N, Yoshimoto S, Maruyama S, Yamazaki M, Inai T, Hashimoto S, Saku T. Keratin 17-positive Civatte bodies in oral lichen planus-distribution variety, diagnostic significance and histopathogenesis. Sci Rep 2020;10:14586.
  46. Kabayama H, Takeuchi M, Taniguchi M, Tokushige N, Kozaki S, Mizutani A, Nakamura T, Mikoshiba K. Syntaxin 1B suppresses macropinocytosis and semaphorin 3A-induced growth cone collapse. J Neurosci 2011;31:7357-64.
  47. Styers ML, Salazar G, Love R, Peden AA, Kowalczyk AP, Faundez V. The endo-lysosomal sorting machinery interacts with the intermediate filament cytoskeleton. Mol Biol Cell 2004;15:5369-82.
  48. Bryant DM, Kerr MC, Hammond LA, Joseph SR, Mostov KE, Teasdale RD, Stow JL. EGF induces macropinocytosis and SNX1-modulated recycling of E-cadherin. J Cell Sci 2007;120(Pt 10):1818-28.
  49. Le TL, Yap AS, Stow JL. Recycling of E-cadherin: a potential mechanism for regulating cadherin dynamics. J Cell Biol 1999;146:219-32.
  50. Bratton DL, Fadok VA, Richter DA, Kailey JM, Guthrie LA, Henson PM. Appearance of phosphatidylserine on apoptotic cells requires calcium-mediated nonspecific flip-flop and is enhanced by loss of the aminophospholipid translocase. J Biol Chem 1997;272:26159-65.
  51. Zhu J, Lin F, Brown DA, Clark RAF. A fibronectin peptide redirects PDGF-BB/PDGFR complexes to micropinocytosis-like internalization and augments PDGF-BB survival signals. J Invest Dermatol 2014;134:921-9.