DOI QR코드

DOI QR Code

Preparation of Protein Adsorptive Anion Exchange Membrane Based on Porous Regenerated Cellulose Support for Membrane Chromatography Application

단백질 흡착성을 갖는 막 크로마토그래피용 재생 셀룰로오스 기반 음이온 교환 다공성 분리막의 제조

  • Seo, Jeong-Hyeon (Green Carbon Research Center, Chemical and Process Technology Division, Korea Research Institute of Chemical Technology) ;
  • Lee, Hong-Tae (Green Carbon Research Center, Chemical and Process Technology Division, Korea Research Institute of Chemical Technology) ;
  • Kim, Tae-Kyung (Green Carbon Research Center, Chemical and Process Technology Division, Korea Research Institute of Chemical Technology) ;
  • Cho, Young-Hoon (Green Carbon Research Center, Chemical and Process Technology Division, Korea Research Institute of Chemical Technology) ;
  • Oh, Taek-Keun (Department of Bio-Environmental Chemistry, College of Agriculture and Life Science, Chungnam National University) ;
  • Park, HoSik (Green Carbon Research Center, Chemical and Process Technology Division, Korea Research Institute of Chemical Technology)
  • 서정현 (한국화학연구원 화학공정연구본부 그린탄소연구센터) ;
  • 이홍태 (한국화학연구원 화학공정연구본부 그린탄소연구센터) ;
  • 김태경 (한국화학연구원 화학공정연구본부 그린탄소연구센터) ;
  • 조영훈 (한국화학연구원 화학공정연구본부 그린탄소연구센터) ;
  • 오택근 (충남대학교 농업생명과학대학 농화학과) ;
  • 박호식 (한국화학연구원 화학공정연구본부 그린탄소연구센터)
  • Received : 2022.10.13
  • Accepted : 2022.10.18
  • Published : 2022.10.31

Abstract

With the development of the bio industry, membrane chromatography with a high adsorption efficiency is emerging to replace the existing column chromatography used in the downstream processes of pharmaceuticals, food, etc. In this study, through the deacetylation reaction of two commercial cellulose acetate (CA) membranes with different pore sizes, the porous regenerated cellulose (RC) supports for membrane chromatography were obtained to attach the anion exchange ligands. The adsorptive membranes for anion exchange were prepared by attaching an anion exchange ligand ([3-(methacryloylamino) propyl] trimethylammonium chloride) containing quaternary ammonium groups on the RC supports by grafting and UV polymerization. The protein adsorption capacities of the prepared membranes were obtained through both the static binding capacity (SBC) and the dynamic adsorption capacity (DBC) measurement. As a result, the membrane chromatography with the smaller the pore size, the larger the surface area showed the highest protein adsorption capacity. Membrane chromatography which was prepared by using deacetylated commercial CA support with MAPTAC ligand (i.e., RC 0.8 + MAPTAC: 43.69 mg/ml, RC 3.0 + MAPTAC: 36.33 mg/ml) showed a higher adsorption capacity compared to commercial membrane chromatography (28.38 mg/ml).

바이오산업의 발전으로 의약품, 식품 등의 생산 과정의 분리/정제 공정에 사용되어 왔던 기존의 컬럼 크로마토그래피를 대체하여 더 높은 처리효율을 갖는 막 크로마토그래피가 부상하고 있다. 본 연구에서는 서로 다른 기공 크기의 두 가지 상용 셀룰로오스 아세테이트(Cellulose acetate, CA) 분리막을 탈아세틸화 과정을 통해, 리간드의 개질이 용이한 다공성 재생 셀룰로오스 지지체를(Regenerated cellulose, RC) 제조하였다. 음이온 교환능을 부여하고자 grafting을 수행하였으며, 구체적으로는 UV 중합법을 통해 4차 암모늄을 포함하는 음이온 교환 리간드(MAPTAC)를 부착하여 음이온 교환용 흡착막을 제조하였다. 단백질 흡착 용량은 정적 흡착 용량(Static binding capacity, SBC)시험을 통해 총 단백질 흡착 용량을 측정했고, 동적 흡착 용량(Dynamic binding capacity, DBC)을 측정하여 상용막과 비교 평가하였다. 성능 평가 결과 단백질 흡착량은 넓은 표면적에 의해 리간드 밀도가 높은, 기공 크기가 작은 순서로 높게 측정되었고, 상용 CA분리막을 탈아세틸화하고 리간드를 부착시킨 분리막(RC 0.8 + MAPTAC 43.69 mg/ml, RC 3.0 + MAPTAC 36.33 mg/ml)이 상용 막 크로마토그래피 제품(28.38 mg/ml) 대비 높은 흡착 용량을 보였다.

Keywords

Acknowledgement

본 연구는 한국화학연구원 주요사업(SI2211-40)과 산업통상자원부 소재부품기술개발사업(20017410)을 통해 수행되었으며 이에 감사드립니다.

References

  1. A. C. Fisher, M. H. Kamga, C. Agarabi, K. Brorson, S. L. Lee, and S. Yoon, "The current scientific and regulatory landscape in advancing integrated continuous biopharmaceutical manufacturing", Trends Biotechnol., 37, 253-267 (2019). https://doi.org/10.1016/j.tibtech.2018.08.008
  2. M. C. Flickinger, "Downstream industrial biotechnology: recovery and purification", John Wiley and Sons (2013).
  3. A. Mehta, "Downstream processing for biopharmaceuticals recovery", Pharmaceuticals from Microbes, pp.163-190, Springer, Cham (2019).
  4. A. Jungbauer, "Continuous downstream processing of biopharmaceuticals", Trends Biotechnol., 31, 479-492 (2013). https://doi.org/10.1016/j.tibtech.2013.05.011
  5. K. H. Youm, and Y. J. Yuk, "Affinity filtration chromatography of proteins by chitosan and chitin membranes: 1. Preparation and characterization of porous affinity membranes", Membr. J., 16, 39-50 (2006).
  6. S. Krause, K. H. Kroner, and W. D. Deckwer, "Comparison of affinity membranes and conventional affinity matrices with regard to protein purification", Biotechnol. Tech., 5, 199-204 (1991). https://doi.org/10.1007/BF00152781
  7. C. K. Chiam, R. Sarbatly, "Purification of aquacultural water: conventional and new membranebased techniques", Sep. Purif. Rev., 40, 126-160 (2011). https://doi.org/10.1080/15422119.2010.549766
  8. C. Charcosset, "Principles on membrane and membrane processes", Membrane Processes in Biotechnology and Pharmaceutics, pp. 1-41, Elsevier (2012).
  9. I. Park, S. Y. Yoo, and H. B. Park, "How to design membrane chromatography for bioseparations: A short review", Membr. J., 31, 145-152 (2021). https://doi.org/10.14579/MEMBRANE_JOURNAL.2021.31.2.145
  10. Y. X. Bai and Y. F. Li, "Preparation and characterization of crosslinked porous cellulose beads", Carbohydr. Polym., 64, 402-407 (2006). https://doi.org/10.1016/j.carbpol.2005.12.009
  11. Z. Liu, "Membrane chromatography for bioseparations: Ligand design and optimization", Ph.D. Dissertation, Univ. of Arkansas, Fayetteville, Arkansas (2016).
  12. M. B. Mellott, K. Searcy, and M. V. Pishko, "Release of protein from highly cross-linked hydrogels of poly (ethylene glycol) diacrylate fabricated by UV polymerization", Biomater., 22, 929-941 (2001). https://doi.org/10.1016/S0142-9612(00)00258-1
  13. Y. Ji, X. Yang, Z. Ji, L. Zhu, N. Ma, D. Chen, X. Jia, J. Tang, and Y. Cao, "DFT-calculated IR spectrum amide I, II, and III band contributions of N-methylacetamide fine components", ACS omega, 5, 8572-8578 (2020). https://doi.org/10.1021/acsomega.9b04421
  14. T. Hoshika, Y. Nishitani, M. Yoshiyama, W. O. Key III, W. Brantley, K. A. Agee, L. Breschi, M. Cadenaro, F. R. Tay, F. Rueggeberg, and D. H. Pashley, "Effects of quaternary ammonium-methacrylates on the mechanical properties of unfilled resins", Dent Mater, 30, 1213-1223 (2014). https://doi.org/10.1016/j.dental.2014.08.365
  15. W. Wei, X. Qi, J. Li, Y. Zhong, G. Zuo, X. Pan, T. Su, J. Zhang, and W. Dong, "Synthesis and characterization of a novel cationic hydrogel base on salecan-g-PMAPTAC", Int. J. Biol. Macromol., 101, 474-480 (2017). https://doi.org/10.1016/j.ijbiomac.2017.03.106
  16. R. K. Mishra, K. Ramasamy, N. N. Ban, and A. B. A. Majeed, "Synthesis of poly 3-(methacryloylamino) propyl trimethylammonium chloride-co-methacrylic acid. copolymer hydrogels for controlled indomethacin delivery", J. Appl. Polym. Sci., 128, 3365-3374 (2013). https://doi.org/10.1002/app.38491
  17. P. M. Gupte, M. Gavasane, A. Kambli, T. Bhadal, and S. Cheulkar, "Dynamic binding capacities of protein a resins for antibody capture", Bioprocess Int, 18, 34-38 (2020).
  18. T. Bergander, K. Nilsson-Valimaa, K. Oberg, and K. M. Lacki, "High-throughput process development: determination of dynamic binding capacity using microtiter filter plates filled with chromatography resin", Biotechnol. Prog., 24, 632-639 (2008). https://doi.org/10.1021/bp0704687
  19. J. Schwellenbach, S. Zobel, F. Taft, L. Villain, and J. Strube, "Purification of monoclonal antibodies using a fiber based cation-exchange stationary phase: parameter determination and modeling", Bioeng., 3, 24 (2016).
  20. A. M. Clemments, P. Botella, and C. C. Landry, "Protein adsorption from biofluids on silica nanoparticles: corona analysis as a function of particle diameter and porosity", ACS Appl. Mater. Interfaces, 7, 21682-21689 (2015). https://doi.org/10.1021/acsami.5b07631
  21. Y. Yao, and A. M. Lenhoff, "Pore size distributions of ion exchangers and relation to protein binding capacity", J. Chromatogr. A, 1126, 107-119 (2006). https://doi.org/10.1016/j.chroma.2006.06.057
  22. P. R. Gavara, N. S. Bibi, M. L. Sanchez, M. Grasselli, and M. Fernandez-Lahore, "Chromatographic characterization and process performance of column-packed anion exchange fibrous adsorbents for high throughput and high capacity bioseparations", Processes, 3, 204-221 (2015). https://doi.org/10.3390/pr3010204
  23. K. H. Youm, and Y. J. Yuk, "Affinity filtration chromatography of proteins by chitosan and chitin membranes: 2. separation of BSA and lysozyme", Membr. J., 19, 113-121 (2009).