DOI QR코드

DOI QR Code

Evaluation of Mechanical Properties and Microstructure Depending on Sintering Heating Rate of IN 939 W Alloy

IN 939 W 합금의 소결 승온 속도에 따른 물리적 특성과 미세조직 분석

  • Jeon, Junhyub (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University) ;
  • Lee, Junho (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University) ;
  • Seo, Namhyuk (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University) ;
  • Son, Seung Bae (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University) ;
  • Jung, Jae-Gil (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University) ;
  • Lee, Seok-Jae (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University)
  • 전준협 (전북대학교 신소재공학부) ;
  • 이준호 (전북대학교 신소재공학부) ;
  • 서남혁 (전북대학교 신소재공학부) ;
  • 손승배 (전북대학교 신소재공학부) ;
  • 정재길 (전북대학교 신소재공학부) ;
  • 이석재 (전북대학교 신소재공학부)
  • Received : 2022.10.05
  • Accepted : 2022.10.21
  • Published : 2022.10.28

Abstract

Changes in the mechanical properties and microstructure of an IN 939 W alloy according to the sintering heating rate were evaluated. IN 939 W alloy samples were fabricated by spark plasma sintering. The phase fraction, number density, and mean radius of the IN 939 W alloy were calculated using a thermodynamic calculation. A universal testing machine and micro-Vickers hardness tester were employed to confirm the mechanical properties of the IN 939 W alloy. X-ray diffraction, optical microscopy, field-emission scanning electron microscopy, Cs-corrected-field emission transmission electron microscopy, and energy dispersive X-ray spectrometry were used to evaluate the microstructure of the alloy. The rapid sintering heating rate resulted in a slightly dispersed γ' phase and chromium oxide. It also suppressed the precipitation of the η phase. These helped to reinforce the mechanical properties.

Keywords

Acknowledgement

This work was supported by a Korea Institute for Advancement of Technology grant, funded by the Korea Government (MOTIE) (P0002019), as part of the Competency Development Program for Industry Specialists. Also, this work was supported by the Technology Innovation Program (20010408) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

References

  1. S. Yan, Q. Wang, X. Chen, C. Zhang and G. Cui: Vacuum, 163 (2019) 194. https://doi.org/10.1016/j.vacuum.2019.01.048
  2. T. B. Gibbons and R. Stickler: High Temperature Alloys for Gas Turbines 1982, (1982) 369.
  3. P. Cavaliere: Spark plasma sintering of materials: advances in processing and applications, Springer, Gewerbestrasse, Cham, Switzerland (2019).
  4. O. F. Ogunbiyi, T. jamiru, E. R. Sadiku, O. T. Adesina, L. Beneke and T. A. Adegbola: Procedia Manuf., 35 (2019) 1324. https://doi.org/10.1016/j.promfg.2019.05.022
  5. S. Pasebani, A. K. Dutt, J. Burns, I. Charit and R. S. Mishra: Mater. Sci. Eng. A, 630 (2015) 155.
  6. M. I. Makena, M. B. Shongwe, M. M. Ramakokovhu and P. A. Olubambi: J. Alloys Compd., 699 (2017) 1166. https://doi.org/10.1016/j.jallcom.2016.12.368
  7. B. J. Babalola, N. Maledi, M. B. Shingwe, M. O. Bodunrin, B. A. Obadele and P. A. Olubambi: J. King Saud Univ. Eng. Sci., 32 (2020) 198.
  8. G. H. Gessinger and M. J. Bomford: Int. Mater. Rev., 19 (1974) 51. https://doi.org/10.1179/095066074790136999
  9. S. Y. Kim, B. K. Guem, M. H. Lee and B. S. Kim: J. Powder Mater., 20 (2013) 33. https://doi.org/10.4150/KPMI.2013.20.1.033
  10. N. Seo, G. Kim, S. Choi, J. Jeon, M.-S. Oh, S. B. Son and S.-J. Lee: Powder Metall., 64 (2021) 180.
  11. M.-S. Kim, H. Son, C. H. Jung, J. Han, J. J. Kim, Y.-D. Kim, H. Choi and S. H. Kim: J. Powder Mater., 29 (2022) 213. https://doi.org/10.4150/KPMI.2022.29.3.213
  12. N. Seo, J. Jeon, G. Kim, J. Park, S. B. Son and S.-J. Lee: J. J. Powder Mater., 28 (2021) 103. https://doi.org/10.4150/KPMI.2021.28.2.103
  13. G. Kim, J. Jeon, N. Seo, J. Park, S. B. Son and S.-J. Lee: J. Powder Mater., 28 (2021) 246. https://doi.org/10.4150/KPMI.2021.28.3.246
  14. N. Seo, J. Jeon, G. Kim, J. Park, S. B. Son and S.-J. Lee: J. Powder Mater., 28 (2021) 221. https://doi.org/10.4150/KPMI.2021.28.3.221
  15. J. Jeon, J. Lee, N. Seo, S. B. Son, J.-G. Jung, and S.-J. Lee: J. Powder Mater., 29 (2022) 219.
  16. G. Kim, J. Jeon, N. Seo, S. Choi, M.-S. Oh, S. B. Son and S.-J. Lee: Arch. Metall. Mater., 66 (2021) 759.
  17. D.-S. Kang, H. Lee, D. W. Yun, H. W. Jeong, Y.-S. Yoo and S.-M. Seo: Korean J. Met. Mater., 60 (2022) 782. https://doi.org/10.3365/KJMM.2022.60.10.782
  18. K. Kim, S.-J. Oh, D. Park, I.-J. Shon and S.-J. Lee: Mater. Trans., 59 (2018) 1206. https://doi.org/10.2320/matertrans.M2018099
  19. S.-J. Oh, I.-J. Shon and S.-J. Lee: J. Powder Mater., 25 (2018) 126. https://doi.org/10.4150/KPMI.2018.25.2.126
  20. D. Park, S.-J. Oh, I.-J. Shon and S.-J. Lee: Arch. Metall. Mater., 63 (2018) 1477.
  21. S.-J. Oh, D. Park, K. Kim, I.-J. Shon and S.-J. Lee: Mater. Sci. Eng. A, 725 (2018) 382. https://doi.org/10.1016/j.msea.2018.04.051
  22. Material Data Sheet, EOS NickelAlloy IN939, EOS GmbH, Germany. (https://www.eos.info/03_system-relatedassets/material-related-contents/metal-materials-andexamples/metal-material-datasheet/nickelalloy-inconel/material_datasheet_eos_nickelalloy_in939_premium_en_web.pdf)
  23. G. K. Bouse: Structure, 8 (1996) 571.
  24. K. Hagihara, T. Nakano and Y. Umakoshi: Acta Mater., 51 (2003) 2623. https://doi.org/10.1016/S1359-6454(03)00060-0
  25. Z. Miskovic, M. Jovanovic, M. Gligic and B. Lukic: Vacuum, 43 (1992) 709. https://doi.org/10.1016/0042-207X(92)90115-D