DOI QR코드

DOI QR Code

Affective Responses to ASMR Using Multidimensional Scaling and Classification

다차원척도법과 분류분석을 이용한 ASMR에 대한 정서표상

  • Received : 2022.04.08
  • Accepted : 2022.06.07
  • Published : 2022.09.30

Abstract

Previous emotion studies revealed the two core affective dimensions of valence and arousal using affect-eliciting stimuli, such as pictures, music, and videos. Autonomous sensory meridian response (ASMR), a type of stimuli that has emerged recently, produces a sense of psychological stability and calmness. We explored whether ASMR could be represented on the core affect dimensions. In this study, we used three affective types ASMR (negative, neutral, and positive) as stimuli. Auditory ASMR videos were used in Study 1, while auditory and audiovisual ASMR videos were used in Study 2. Participants were asked to rate how they felt about the ten adjectives using five-point Likert scales. Multidimensional scaling (MDS) and classification analyses were performed. The results of the MDS showed that distinctions between auditory and audiovisual ASMR videos were represented well in the valence dimension. Additionally, the results of the classification showed that affective conditions within and across individuals for within- and cross-modalities. Thus, we confirmed that the affective representations for individuals could be predicted and that the affective representations were consistent between individuals. These results suggest that ASMR videos, including other affect-eliciting videos, were also located in the core affect dimension space, supporting the core affect theory (Russell, 1980).

이전 정서연구에서는 다양한 정서유발자극을 이용한 정서 차원 연구들을 통해 쾌불쾌 차원(valence)과 각성 차원(arousal)이란 두 가지의 핵심정서(core affect) 차원을 밝혔다. 최근 등장한 ASMR은 심리적 안정감, 편안함 등의 정서를 유발하는데, 이런 새로운 자극 또한 핵심정서차원에 위치하는지, 사람들에게 일으키는 정서표상은 어떤 양상을 보이는지 확인하고자 하였다. 본 연구는 3가지 정서유형(부정, 중립, 긍정)으로 구분한 ASMR 영상을 자극으로 사용하였다. 연구1에서는 청각 ASMR, 연구2에서는 청각 및 시청각 ASMR을 자극으로 사용하였고, 각 자극마다 10가지의 형용사에 대해 5점 리커트 척도로 정서경험을 보고받았다. 자료수집 이후 다차원척도법과 분류분석을 실시하였다. 다차원척도법 결과, 청각 및 시청각 ASMR 모두 핵심정서차원인 쾌불쾌 차원에서 잘 구분되었다. 분류분석 결과, 동일한 감각양상 및 서로 다른 감각양상의 ASMR에 대한 참가자 개인의 정서표상 구분과 참가자들간 정서표상 구분이 잘 이뤄졌다. 종합적으로 본 연구는 다른 정서유발자극들과 같이 ASMR 또한 핵심정서차원에 위치한다는 것을 시사한다는 점에서 기존의 Russell(1980)의 핵심정서차원 이론을 지지한다. 또한, 감각양상에 상관없이 ASMR에 대한 참가자 개인의 정서표상이 예측가능하며, 참가자들의 정서표상이 일관적이라는 점을 시사한다.

Keywords

Acknowledgement

이 논문은 한국연구재단 4단계 BK21사업(전북대학교 심리학과)의 지원을 받아 연구되었음(No. 4199990714213).

References

  1. Barratt, E. L. & Davis, N. J. (2015). Autonomous sensory meridian response (ASMR): A flow-like mental state. PeerJ, 3. DOI: 10.7717/peerj.851
  2. Barrett, L. F. & Bliss-Moreau, E. (2009). Affect as a psychological primitive. In Advances in Experimental Social Psychology, 41, 167-218. DOI: 10.1016/S0065-2601(08)00404-8
  3. Baucom, L. B., Wedell, D. H., Wang, J., Blitzer, D. N., & Shinkareva, S. V. (2012). Decoding the neural representation of affective states. NeuroImage, 59(1), 718-727. DOI: 10.1016/j.neuroimage.2011.07.037
  4. Bernat, E., Patrick, C. J., Benning, S. D., & Tellegen, A. (2006). Effects of picture content and intensity on affective physiological response. Psychophysiology, 43(1), 93-103. DOI: 10.1111/j.1469-8986.2006.00380.x
  5. Botien, F. A. (1998). The effects of emotional behaviour on components of the respiratory cycle. Biological Psychology, 49(1-2), 29-51. DOI: 10.1016/S0301-0511(98)00025-8
  6. Bradley, M. M. & Lang, P. J. (2000). Affective reactions to acoustic stimuli. Psychophysiology, 37(2), 204-215. DOI: 10.1111/1469-8986.3720204
  7. Chanel, G., Ansari-Asl, K., & Pun, T. (2007, October). Valence-arousal evaluation using physiological signals in an emotion recall paradigm. In 2007 IEEE International Conference on Systems, Man and Cybernetics (pp. 2662-2667). IEEE. DOI: 10.1109/ICSMC.2007.4413638
  8. Chikazoe, J., Lee, D., Kriegeskorte, N., & Anderson, A. K. (2014). Population coding of affect across stimuli, modalities and individuals. Nature Neuroscience, 17(8), 1114-1122. DOI: 10.1038/nn.3749
  9. Codispoti, M., Bradley, M. M., & Lang, P. J. (2001). Affective reactions to briefly presented pictures. Psychophysiology, 38(3), 474-478. DOI: 10.1111/1469-8986.3830474
  10. Dalenberg, J. R., Weitkamp, L., Renken, R. J., & Ter Horst, G. J. (2018). Valence processing differs across stimulus modalities. NeuroImage, 183, 734-744. DOI: 10.1016/j.neuroimage.2018.08.059
  11. Fredborg, B. K., Clark, J. M., & Smith, S. D. (2018). Mindfulness and autonomous sensory meridian response (ASMR). PeerJ, 6, e5414. DOI: 10.7717/peerj.5414
  12. Gomes, C. F. A., Brainerd, C. J., & Stein, L. M. (2013). Effects of emotional valence and arousal on recollective and nonrecollective recall. Journal of Experimental Psychology: Learning Memory and Cognition, 39(3), 663-677. DOI: 10.1037/a0028578
  13. Gomez, P. & Danuser, B. (2004). Affective and physiological responses to environmental noises and music. International Journal of Psychophysiology, 53(2), 91-103. DOI: 10.1016/j.ijpsycho.2004.02.002
  14. Gomez, P., Stahel, W. A., & Danuser, B. (2004). Respiratory responses during affective picture viewing. Biological Psychology, 67(3), 359-373. DOI: 10.1016/j.biopsycho.2004.03.013
  15. Gomez, P., Zimmermann, P., Guttormsen-Schar, S., & Danuser, B. (2005). Respiratory responses associated with affective processing of film stimuli. Biological Psychology, 68(3), 223-235. DOI: 10.1016/j.biopsycho.2004.06.003
  16. Haynes, J. D. & Rees, G. (2006). Decoding mental states from brain activity in humans. Nature Reviews Neuroscience, 7(7), 523-534. DOI: 10.1038/nrn1931
  17. Kensinger, E. A. & Corkin, S. (2004). Two routes to emotional memory: Distinct neural processes for valence and arousal. Proceedings of the National Academy of Sciences of the United States of America, 101(9), 3310-3315. DOI: 10.1073/pnas.0306408101
  18. Kim, J. (2021). Representation of facial expressions of different ages: A multidimensional scaling study. Science of Emotion and Sensibility, 24(3), 71-80. DOI: 10.14695/KJSOS.2021.24.3.71
  19. Kim, J., Shinkareva, S. V., & Wedell, D. H. (2017) . Representations of modality-general valence for videos and music derived from fMRI data. NeuroImage, 148, 42-54. DOI: 10.1016/J.NEUROI MAGE.2017.01.002
  20. Kim, J., Weber, C. E., Gao, C., Schuleis, S., Wedell, D. H., & Shinkareva, S. V. (2020). A study in affect: Predicting valence from fMRI data. Neuropsychologia, 143, 107473. https://doi.org/10.1016/j.neuropsychologia.2020.107473
  21. Kim, J. & Wedell, D. H. (2016). Comparison of physiological responses to affect eliciting pictures and music. International Journal of Psychophysiology, 101, 9-17. DOI: 10.1016/j.ijpsycho.2015.12.011
  22. Kim, J., Wedell, D. H., & Shinkareva, S. V. (2018) Identification of task sets within and across stimulus modalities. Neuropsychologia, 113, 78-84 https://doi.org/10.1016/j.neuropsychologia.2018.03.023
  23. Kim, M. H. & Min, K. H. (2004). Emotional experience and emotion regulation in old age. Korean Journal of Psychology General, 23(2), 1-21.
  24. Ko Wai, C. (2020). Phenomenological study about enhancing university student's psychosocial wellbeing through YouTube videos: Autonomous Sensory Meridian Response (ASMR) in Finland. (Unpublished master's thesis). University of Lapland, Rovaniemi, Finland Retrieved from https://lauda.ulapland.fi/handle/10024/64317
  25. Larsen, J. T., Norris, C. J., & Cacioppo, J. T. (2003). Effects of positive and negative affect on electromyographic activity over zygomaticus major and corrugator supercilii. Psychophysiology, 40(5), 776-785. DOI: 10.1111/1469-8986.00078
  26. Lee, J. & Kim, J. (2019). Analysis of the relaxing effect of ASMR sound contents. The Institute of Electronics and Information Engineers, 56(3), 139-145. https://doi.org/10.5573/ieie.2019.56.3.139
  27. Lochte, B., Guillory, S., Richard, C., & BI, W. K. (2018). An fMRI investigation of the neural correlates underlying the autonomous sensory meridian response (ASMR). BioImpacts, 8(4), 295-304. DOI:10.15171/bi.2018.32
  28. Myun, K. G. & Kim, E. (2017). The effects of white noise on sleep quality, depression and stress in university students. Journal of Korean Academic Society of Home Health Care Nursing, 24(3), 316-324 https://doi.org/10.22705/JKASHCN.2017.24.3.316
  29. Peelen, M., Atkinson, A., & Vuilleumier, P. (2010). Supramodal representations of perceived emotions in the human brain. Journal of Neuroscience, 30(30), 10127-10134. DOI: 10.1523/JNEUROSCI.2161-10.2010
  30. Poerio, G. L., Blakey, E., Hostler, T. J., & Veltri, T. (2018). More than a feeling: Autonomous sensory meridian response (asmr) is characterized by reliable changes in affect and physiology. PLoS ONE, 13(6). DOI: 10.1371/journal.pone.0196645
  31. Putkinen, V., Nazari-Farsani, S., Seppala, K., Karjalainen, T., Sun, L., Karlsson, H. K., Hundson, M., Heikkila, T.T., Hirvonen, J., & Nummenmaa, L. (2021). Decoding music-evoked emotions in the auditory and motor cortex. Cerebral Cortex, 31(5), 2549-2560. https://doi.org/10.1093/cercor/bhaa373
  32. Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39(6), 1161. DOI: 10.1037/h0077714
  33. Russell, J. A. & Barrett, L. F. (1999). Core affect, prototypical emotional episodes, and other things called emotion: Dissecting the elephant. Journal of Personality and Social Psychology, 76(5), 805. DOI: 10.1037/0022-3514.76.5.805
  34. Sachs, M. E., Habibi, A., Damasio, A., & Kaplan, J. T. (2018). Decoding the neural signatures of emotions expressed through sound. Neuroimage, 174, 1-10. https://doi.org/10.1016/j.neuroimage.2018.02.058
  35. Shinkareva, S. V., Gao, C., & Wedell, D. (2020). Audiovisual representations of valence: A cross-study perspective. Affective Science, 1(4), 237-246. https://doi.org/10.1007/s42761-020-00023-9
  36. Shinkareva, S. V., Wang, J., Kim, J.,Facciani, M. J., Baucom, L. B., & Wedell, D. H. (2014). Representations of modality-specific affective processing for visual and auditory stimuli derived from functional magnetic resonance imaging data. Human Brain Mapping, 35(7), 3558-3568. DOI: 10.1002/HBM.22421
  37. Shinkareva, S. V., Wang, J., & Wedell, D. H. (2013). Examining similarity structure: Multidimensional scaling and related approaches in neuroimaging. Computational and Mathematical Methods in Medicine, 2013. DOI: 10.1155/2013/796183
  38. Sin, M. A. & Yun, J. Y. (2019). Convergent study of the effect of online advertising design using ASMR (Autonomous Sensory Meridian Response). The Korean Society of Science & Art, 37(3), 243-253. https://doi.org/10.17548/ksaf.2019.06.30.243
  39. Smith, N. & Snider, A. M. (2019). ASMR, affect and digitally-mediated intimacy. Emotion, Space and Society, 30, 41-48. DOI: 10.1016/j.emospa.2018.11.002
  40. Viinikainen, M., Kaatsyri, J., & Sams, M. (2012). Representation of perceived sound valence in the human brain. Human Brain Mapping, 33(10), 2295-2305. DOI: 10.1002/hbm.21362
  41. Weaverdyck, M. E., Lieberman, M. D., & Parkinson, C. (2020). Tools of the trade multivoxel pattern analysis in fMRI: A practical introduction for social and affective neuroscientists. Social Cognitive and Affective Neuroscience, 15(4), 487-509. DOI:10.1093/scan/nsaa057