DOI QR코드

DOI QR Code

The Distribution and Characteristics of Protected Areas and Natural Resources in the Metropolitan Area in Blog Posts

블로그 게시물에 나타난 수도권 보전지역 및 자연자원의 분포 및 특성

  • Lee, Sung-Hee (Interdisciplinary Program in Landscape Architecture, Seoul National University) ;
  • Son, Yong-Hoon (Graduate School of Environment Studies, Seoul National University)
  • 이성희 (서울대학교 협동과정 조경학) ;
  • 손용훈 (서울대학교 환경대학원)
  • Received : 2022.08.01
  • Accepted : 2022.09.15
  • Published : 2022.10.31

Abstract

This study aimed to evaluate the awareness of conservation areas and green resources and analyze their characteristics by utilizing accumulated blog data created for specific places and objects. Among all the conservation areas and resources located in the Seoul metropolitan area, places that can be evaluated were classified, and sites were evaluated by dividing them into ten categories based on the number of blog posts written. As a result of the study, the users' awareness of forests was the highest, and the awareness of conservation areas and green resources was higher in urban areas than suburban areas. The result shows that the conservation areas and green resources located around the metropolitan area serve as natural tourist destinations while being the object of conservation for users. In addition, these results are in the same vein as the research results in domestic and foreign studies on the importance of ecosystem services in urban areas. Unlike existing research methods, this study is meaningful in that it identified the level of user awareness through social media analysis and applied it to evaluating conservation areas and green resources. It can be used as basic data to prepare a management plan considering public interest and awareness or to establish a development plan to increase awareness. In addition, the cumulative amount of blog content used in the study is meaningful in that it can identify and monitor users' interest in the space. However, it was not possible to examine the contents of each blog in detail because it was evaluated based on the amount of social media content. In addition, in the case of conservation areas and green resources, it is necessary to review and supplement the evaluation contents by adding keyword analysis and content analysis for the site to be evaluated as content other than the pure viewpoint of users may be mixed with development issues.

본 연구에서는 특정 장소 및 대상에 대하여 이용자들이 자유롭게 서술한 블로그 데이터의 누적 콘텐츠 발행량을 활용하여 보전지역 및 자연자원에 대한 사람들의 인지성을 평가하고 특성을 분석하는 것을 목적으로 하였다. 이에 수도권에 위치하고 있는 전체 보전지역 및 자원 중 평가 가능한 곳들을 구별하고, 각 장소에 대하여 사람들이 작성한 블로그 게시물 수를 토대로 종합하여 10단계 구분하여 평가하였다. 연구 결과, 산림에 대한 이용자들의 인지성이 가장 높은 것으로 나타났으며, 도시권에 있어서 보전지역 및 자연자원에 대한 인지성이 더 높게 나타났다. 이는 수도권 주변에 위치하는 보전지역과 자연자원이 이용자들에게 보전의 대상이면서도 자연 관광지로서의 역할을 수행하고 있는 것을 보여준다. 또한 이러한 결과는 국내외 연구에서 도시지역에 있어서 생태계 서비스가 중요하다는 연구결과들과 같은 맥락을 보인다. 본 연구는 기존의 연구방법과는 달리 소셜미디어 분석으로 이용자의 인지 정도를 파악하고, 이를 보전지역 및 자연자원 평가에 적용하였다는 점에서 의의가 있으며, 본 연구의 결과는 향후 도시녹지공간에 대한 대중의 관심 및 인지 정도를 고려하여 관리방안을 마련하거나, 인지성을 높이기 위하여 발전방안을 수립하는 데 기초 자료로 활용될 수 있다. 또한 연구에서 활용된 블로그 누적 콘텐츠 발행량은 공간에 대한 이용자의 관심을 파악하고 모니터링 할 수 있는 점에서 의의가 있다. 단, 본 연구에서는 소셜미디어 콘텐츠 발행량을 기반으로 평가하였기에 각 블로그에 담긴 내용을 세밀하게 살펴보지는 못했다. 또한 보전지역과 자연자원의 경우 개발 이슈와 함께 이용자의 순수한 관점이 아닌 내용이 혼재되어 있을 수 있기 때문에, 추후 평가 대상지에 대한 키워드 분석과 내용분석을 추가하여 평가 내용을 검토하고 보충할 필요가 있다.

Keywords

Acknowledgement

본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 중견연구사업(과제명: 이용자 참여 데이터와 공간정보를 통합한 경관질 평가 모델 개발) 지원을 받아 수행된 연구(2021R1A2C109486012) 결과 중 일부를 발전시킨 논문임.

References

  1. Bates, L. J. and R. E. Santerre(2001) The public demand for open space: The case of Connecticut communities. Journal of Urban Economics 50(1): 97-111. https://doi.org/10.1006/juec.2000.2212
  2. Bennett, N. J., R. Roth, S. C. Klain, K. Chan, P. Christie, D. A. Clark, G. Cullman, D. Curran, T. J. Durbin, G. Epstein, A. Greenberg, M. P. Nelson, J. Sandlos, R. Stedman, T. L. Teel, R. Thomas, D. Verissimo and C. Wyborn(2017) Conservation social science: Understanding and integrating human dimensions to improve conservation. Biological Conservation 205: 93-108. https://doi.org/10.1016/j.biocon.2016.10.006
  3. Cheng, X., S. Van Damme, L. Li and P. Uyttenhove(2019) Evaluation of cultural ecosystem services: A review of methods. Ecosystem Services 37: 100925. https://doi.org/10.1016/j.ecoser.2019.100925
  4. Donahue, M. L., B. L. Keeler, S. A. Wood, D. M. Fisher, Z. A. Hamstead and T. McPhearson(2018) Using social media to understand drivers of urban park visitation in the Twin Cities, MN. Landscape and Urban Planning 175: 1-10. https://doi.org/10.1016/j.landurbplan.2018.02.006
  5. Dunkel, A.(2015) Visualizing the perceived environment using crowdsourced photo geodata. Landscape and Urban Planning 142: 173-186. https://doi.org/10.1016/j.landurbplan.2015.02.022
  6. Fisher, D. M., S. A. Wood, E. M. White, D. J. Blahna, S. Lange, A. Weinberg, M. Tomco and E. Lia(2018) Recreational use in dispersed public lands measured using social media data and on-site counts. Journal of Environmental Management 222: 465-474.
  7. Ghermandi, A. and M. Sinclair(2019) Passive crowdsourcing of social media in environmental research: A systematic map. Global Environmental Change 55: 36-47. https://doi.org/10.1016/j.gloenvcha.2019.02.003
  8. Gosal, A. S., I. R. Geijzendorffer, T. Vaclavik, B. Poulin and G. Ziv(2019) Using social media, machine learning and natural language processing to map multiple recreational beneficiaries. Ecosystem Services 38: 100958. https://doi.org/10.1016/j.ecoser.2019.100958
  9. Guler, C., G. D. Thyne, J. E. McCray and K. A. Turner(2002) Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeology Journal 10(4): 455-474. https://doi.org/10.1007/s10040-002-0196-6
  10. Hausmann, A., T. Toivonen, V. Heikinheimo, H. Tenkanen, R. Slotow and E. Di Minin(2017) Social media reveal that charismatic species are not the main attractor of ecotourists to sub-Saharan protected areas. Scientific Reports 7(1): 1-9. https://doi.org/10.1038/s41598-016-0028-x
  11. Kim, J. Y. and Y. H. Son(2021) Assessing and mapping cultural ecosystem services of an urban forest based on narratives from blog posts. Ecological Indicators 129: 107983. https://doi.org/10.1016/j.ecolind.2021.107983
  12. Knoke, T., M. Kindu, T. Schneider and T. Gobakken(2021) Inventory of forest attributes to support the integration of non-provisioning ecosystem services and biodiversity into forest planning-from collecting data to providing information. Current Forestry Reports 7(1): 38-58. https://doi.org/10.1007/s40725-021-00138-7
  13. Lee, S. H. and Y. H. Son(2018) Identifying landscape perceptions of visitors' to the Taean coast national park using social media data: Focused on Kkotji Beach, Sinduri coastal sand dune, and Manlipo beach. Journal of the Korean Institute of Landscape Architecture 46(5): 10-21. https://doi.org/10.9715/KILA.2018.46.5.010
  14. Lee, S. H. and Y. H. Son(2021) Evaluation of preference by Bukhansan Dulegil course using sentiment analysis of blog data. Journal of the Korean Institute of Landscape Architecture 49(3): 1-10.
  15. Millennium Ecosystem Assessment, M. E. A.(2005) Ecosystems and Human Well-Being. Washington, DC: Island press.
  16. Plieninger, T., S. Dijks, E. Oteros-Rozas and C. Bieling(2013) Assessing, mapping, and quantifying cultural ecosystem services at community level. Land Use Policy 33: 118-129. https://doi.org/10.1016/j.landusepol.2012.12.013
  17. Plieninger, T., C. Bieling, N. Fagerholm, A. Byg, T. Hartel, P. Hurley, C. A. Lopez-Santiago, N. Nagabhatla, E. Oteros-Rozas, C. M. Raymond, D. van der Horst and L. Huntsinger(2015) The role of cultural ecosystem services in landscape management and planning. Current Opinion in Environmental Sustainability 14: 28-33. https://doi.org/10.1016/j.cosust.2015.02.006
  18. Schirpke, U., E. Tasser, M. Ebner and U. Tappeiner(2021) What can geotagged photographs tell us about cultural ecosystem services of lakes? Ecosystem Services 51: 101354. https://doi.org/10.1016/j.ecoser.2021.101354
  19. Sinclair, M., M. Mayer, M. Woltering and A. Ghermandi(2020) Using social media to estimate visitor provenance and patterns of recreation in Germany's national parks. Journal of Environmental Management 263: 110418.
  20. Sonter, L. J., K. B. Watson, S. A. Wood and T. H. Ricketts(2016) Spatial and temporal dynamics and value of nature-based recreation, estimated via social media. PLOS one 11(9): e0162372. https://doi.org/10.1371/journal.pone.0162372
  21. Tajima, K.(2003) New estimates of the demand for urban green space: Implications for valuing the environmental benefits of Boston's big dig project. Journal of Urban Affairs 25(5): 641-655. https://doi.org/10.1111/j.1467-9906.2003.00006.x
  22. Tenerelli, P., U. Demsar and S. Luque(2016) Crowdsourcing indicators for cultural ecosystem services: A geographically weighted approach for mountain landscapes. Ecological Indicators 64: 237-248. https://doi.org/10.1016/j.ecolind.2015.12.042
  23. Toivonen, T., V. Heikinheimo, C. Fink, A. Hausmann, T. Hiippala, O. Jarv and E. Di Minin(2019) Social media data for conservation science: A methodological overview. Biological Conservation 233: 298-315. https://doi.org/10.1016/j.biocon.2019.01.023
  24. Van Zanten, B. T., D. B. van Berkel, R. K. Meentemeyer, J. W. Smith, K. F. Tieskens and P. H. Verburg(2016) Continental scale quantification of landscape values using social media data. Proceedings of the National Academy of Sciences of the United States of America 113(46): 12974-12979. https://doi.org/10.1073/pnas.1614158113
  25. Waldron, A., A. O. Mooers, D. C. Miller, N. Nibbelink, D. Redding, T. S. Kuhn, J. T. Roberts and J. L. Gittleman(2013) Targeting global conservation funding to limit immediate biodiversity declines. Proceedings of the National Academy of Sciences 110(29): 12144-12148. https://doi.org/10.1073/pnas.1221370110
  26. Wang, H., X. W. Jiang, L. Wan, G. Han and H. Guo(2015) Hydrogeochemical characterization of groundwater flow systems in the discharge area of a river basin. Journal of Hydrology 527: 433-441. https://doi.org/10.1016/j.jhydrol.2015.04.063
  27. Wood, S. A., S. G. Winder, E. H. Lia, E. M. White, C. S. L. Crowley and A. A. Milnor(2020) Next-generation visitation models using social media to estimate recreation on public lands. Scientific Reports 10(1): 1-12. https://doi.org/10.1038/s41598-019-56847-4
  28. Yu, G., X. Zheng, J. Zhu, Q. Zhang, W. Bao and Z. Xie(2019) Forest Ecosystem Processes and Changes. Higher Education Press, Beijing, China.
  29. Zheng, S., Y. Fu and H. Liu(2009) Demand for urban quality of living in China: Evolution in compensating land-rent and wage-rate differentials. The Journal of Real Estate Finance and Economics 38(3): 194-213. https://doi.org/10.1007/s11146-008-9152-0
  30. Zhang, K., Y. Chen and C. Li(2019) Discovering the tourists' behaviors and perceptions in a tourism destination by analyzing photos' visual content with a computer deep learning model: The case of Beijing. Tourism Management 75: 595-608. https://doi.org/10.1016/j.tourman.2019.07.002
  31. Digital times. http://www.dt.co.kr/contents.html?article_no=2022012302109970821001&ref=naver, 2022.07.25.
  32. Food and Agriculture Organization of the United Nations, F. A. O.(2020) The State of World's Forests: Forest, Biodiversity and People. http://www.fao.org/publications/sofo/en/