DOI QR코드

DOI QR Code

Ammonia Adsorption Capacity and Breakthrough Curve of Zeolitic Materials Synthesized from Coal Fly Ash

석탄 비산재로부터 합성된 제올라이트의 암모니아의 흡착용량 및 파과특성

  • Park, Jong-Won (Department of Environmental Adminstration, Catholic University of Pusan) ;
  • Lee, Chang-Han (Department of Environmental Adminstration, Catholic University of Pusan)
  • 박종원 (부산가톨릭대학교 환경행정학과) ;
  • 이창한 (부산가톨릭대학교 환경행정학과)
  • Received : 2022.08.03
  • Accepted : 2022.09.16
  • Published : 2022.10.31

Abstract

A zeolite material with a Si/Al molar ratio of 1.2 was synthesized by changing the NaOH/CFA ratio of coal fly ash (CFA) via a fusion/hydrothermal reaction in the HD thermal power plant. The change in the crystal structure of the zeolite was confirmed using XRD and SEM, and the ammonia adsorption capacities of the synthesized zeolitic materials and a commercial zeolite (Na-A zeolite) were analyzed via an ammonia temperature-programmed desorption (NH3-TPD) process. The SEM and XRD results revealed out the zeolitic materials from the coal fly ash maintained a hexagonal Linde-type crystal structure similar to that of Na-A zeolite, but the crystallinity of the synthesized zeolitic material was reduced due to impurities. The NH3 adsorption capacity, determined from the NH3-TPD analysis of was 1.122 mmol/g of the synthesized zeolitic material, which was lower than the NH3 adsorption capacity of the Na-A zeolite.

Keywords

Acknowledgement

본 논문은 2020년도 부산가톨릭대학교 교내학술연구비의 지원에 의하여 수행되었습니다.

References

  1. Bandosz, T. J., Petit, C., 2009, On the reactive adsorption of ammonia on activated carbons modified by impregnation with inorganic compounds, J. Colloid Interface Sci., 338(2), 329-345. https://doi.org/10.1016/j.jcis.2009.06.039
  2. Benaliouche, F., Boucheffa, Y., Ayrault, P., Mignard, S., Magnoux, P., 2008, NH3-TPD and FTIR spectroscopy of pyridine adsorption studies for characterization of Ag and Cu-exchanged X zeolites, Microporous Mesoporous Mater., 111, 80-88. https://doi.org/10.1016/j.micromeso.2007.07.006
  3. Bernal, M. P., Lopez-Real, J. M., 1993, Natural zeolites and sepiolite as ammonium and ammonia adsorbent materials, Bioresour. Technol., 43, 27-33. https://doi.org/10.1016/0960-8524(93)90078-P
  4. Carlos, A. R., Williams, C. D., Clive, L. R., 2009, A Comparative study of two methods for the synthesis of fly ash-based sodium and potassium type zeolites, Fuel, 88(8), 1403-1416. https://doi.org/10.1016/j.fuel.2009.02.012
  5. Choi, J. H., Lee, C. H., 2019, Adsorption and desorption characteristics of Sr, Cs, and Na ions with Na-A zeolite synthesized from coal fly ash in low-alkali condition, J. Environ. Sci. Int., 28(6), 561-570. https://doi.org/10.5322/JESI.2019.28.6.561
  6. Depla, A., Verheyen, E., Veyfeyken, A., Gobechiya, E., Hartmana, R., Schaefer, R., Martens, J. A., Kirschhock, C. E. A., 2011, Zeolites X and A crystallization compared by simultaneous UV/VIS-Raman and X-ray diffraction, Phys. Chem. Chem. Phys., 13, 13730-13737. https://doi.org/10.1039/c1cp20157c
  7. El-Kamash, A. M., 2008, Evaluation of zeolite A for the sorptive removal of Cs+ and Sr2+ ions from aqueous solutions using batch and fixed bed column operations, J. Hazard. Mater., 151(2-3), 432-445. https://doi.org/10.1016/j.jhazmat.2007.06.009
  8. Erten-Kaya, Y., Cakicioglu-Ozkan, F., 2012, Effect of ultrasound on the kinetics of cation exchange in NaX zeolite, Ultrason. Sonochem., 19(3), 701-706. https://doi.org/10.1016/j.ultsonch.2011.10.010
  9. Goncalves, M., Sanchez-Garcia, L., Oliveira Jardim, E. D., Silvestre-Albero, J., Rodriguez-Reinoso, F., 2011, Ammonia removal using activated carbons: Effect of the surface chemistry in dry and moist conditions, Environ. Sci. Technol., 45(24), 10605-10610. https://doi.org/10.1021/es203093v
  10. Ha, J. C., Song, Y. J., 2015, An Investigation of awareness on the Fukushima nuclear accident and radioactive contamination, J. Rad. Prot. Res., 41(1), 7-14.
  11. Huang, C. C., Li, H. S., Chen, C. H., 2008, Effect of surface acidic oxides of activated carbon on adsorption of ammonia, J. Hazard. Mater., 159(2-3), 523-527. https://doi.org/10.1016/j.jhazmat.2008.02.051
  12. Huang, C. C., Chen, H. M., Chen, C. H., Huang, J. C., 2010, Effect of surface oxides on hydrogen storage of activated carbon, Sep. Purif. Technol., 70(3), 291-295. https://doi.org/10.1016/j.seppur.2009.10.009
  13. Jorgensen, S. E., Libor, O., Lea Graber, K., Barkacs, K., 1976, Ammonia removal by use of clinoptilolite, Water Res., 10, 213-224. https://doi.org/10.1016/0043-1354(76)90130-5
  14. Joshi, U. D., Joshi, P. N., Tamhankar, S. S., Joshi, V. V., Rode, C. V., Shiralkar, V. P., 2003, Effect of nonframework cations and crystallinity on the basicity of NaX zeolites, Appl. Catal. A, 239, 209-220. https://doi.org/10.1016/S0926-860X(02)00391-5
  15. KOSIS (Korean statistical information service), 2020, https://www.index.go.kr/potal/main/EachDtlPageDetail.do?idx_cd=1339.
  16. Khabzina, Y., Farrusseng, D., 2018, Unravelling ammonia adsorption mechanisms of adsorbents in humid conditions, Microporous Mesoporous Mater., 265, 143-148. https://doi.org/10.1016/j.micromeso.2018.02.011
  17. Kim, C. G., 2016, Removal of ammonium and nitrate nitrogens from wastewater using zeolite. J. Korea Org. Resour. Recycl. Assoc., 24, 59-63.
  18. Kim, S. S., Lee, C. H., 2012, Adsorption of SO2 by zeolite synthesized from coal fly ash, J. Environ. Sci. Int., 21(6), 687-694. https://doi.org/10.5322/JES.2012.21.6.687
  19. Kim, S. S., Lee, C. H., Park, S. W., 2010, Adsorption analysis of VOCs of zeolite synthesized from coal fly ash in a fixed-bed adsorber, Korean Chem. Eng. Res., 48(6), 784-790.
  20. Kim, N. H., Park, K. S., Lee, S. H., Park, S. Y., Kim, D. S., Lee, K. S., Paik, K. J., Moon, Y. W., 2011, A Study on the examination of odor substances generated from the painting, the casting the ribber manufacturing, and the used oil refining facilities in Gwang-ju hanam industrial complex, Korean Journal of Odor Research and Engineering, 10(2), 53-61.
  21. Lee, C. H., 2019, Zeolitification characteristics of coal fly ash by amount of Na2CO3 using the fusion/hydrothermal method, J. Environ. Sci. Int., 28(6), 553-559. https://doi.org/10.5322/JESI.2019.28.6.553
  22. Lee, H. D., Kang, D. J., Lee, M. H., Kang, D. H., Oh, K. J., 2012, Removal efficiency of the deodorization equipment and characteristics of malodor during the process in co-treatment of sewage and food waste of Su-young wastewater treatment plant in Busan, Clean Technology, 18(4), 379-389. https://doi.org/10.7464/KSCT.2012.18.4.379
  23. Lee, C. H., Kam, S. K., Lee, M. G., 2017, Removal characteristics of Sr ion by Na-A zeolite synthesized using coal fly ash generated from a thermal power plant, J. Environ. Sci. Int., 26(3), 363-371. https://doi.org/10.5322/JESI.2017.26.3.363
  24. Lee, C. H., Park, J. M., Lee, M. G., 2014, Adsorption charateristics of Sr(II) and Cs(I) ions by zeolite synthesized from coal fly ash, J. Environ. Sci. Int., 23(12), 1987-1998. https://doi.org/10.5322/JESI.2014.23.12.1987
  25. Lin, L., Lei, Z., Wang, L., Liu, X., Zhang, Y., Wan, C., Lee, D. J., Tay, J. H., 2013, Adsortion mechanisms of high-levels of ammonium onto natural and NaCl-modified zeolites, Sep. Purif. Technol., 103, 15-20. https://doi.org/10.1016/j.seppur.2012.10.005
  26. Machado, N. R. C. F., Miotto, D. M. M., 2005, Synthesis of Na-A and -X zeolites from oil shale ash, Fuel, 84(18), 2289-2294. https://doi.org/10.1016/j.fuel.2005.05.003
  27. Munthali, M. W., Johan, E., Aono, H., Matsue, N., 2015, Cs+ and Sr2+ adsorption selectivity of zeolites in relation to radioactive decontamination, J. Asian Cera. Soc., 3(3), 245-250. https://doi.org/10.1016/j.jascer.2015.04.002
  28. Murayama, N., Yamamoto, H., Shibata, J., 2002, Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction, Int. J. Miner. Process, 64(1), 1-17. https://doi.org/10.1016/S0301-7516(01)00046-1
  29. Oktavitri, N. I., Purnobasuki, H., Kuncoro, E. P., Purnamasari, I., 2017, Ammonia removal using coconut shell based adsorbent: Effect of carbonization duration and contact time, IPTEK Journal of Proceedings Series, 3(4), 26-32.
  30. Park, J. W., Ahn, K. H., Lee, W. K., Lee, C. H., 2019, Crystallization properties of zeolite A synthesized from coal fly ash using a fusion/hydrothermal method, Mol. Cryst. Liq. Cryst., 687(1), 89-96. https://doi.org/10.1080/15421406.2019.1651057
  31. Park, J. W., Seo, Y. J., Ryu, S. H., Kim, S. D., 2017, Ammonia adsorption capacity of zeolite X with different cations, Appl. Chem. Eng., 28(3), 355-359.
  32. Pebalan, R. T., Bertetti, F. P., 2001, Cation-exchange properties of nature zeolites, Geochemical Society, 435-518.
  33. Rieth, A. J., Dinca, M., 2018, Controlled gas uptake in metal-organic frameworks with record ammonia sorption, J. Am. Chem. Soc., 140(9), 3461-3466. https://doi.org/10.1021/jacs.8b00313
  34. Sandomierski, M., Buchwald, Z., Koczorowski, W., Voelkela, A., 2019, Calcium forms of zeolites A and X as fillers in dental restroative materials with remineralizing potential, Micropor. Mesopor. Mat., 294, 109899.
  35. Sherry, H. S., Walton, H. F., 1975, The ion exchange properties of zeolites, J. Phys. Chem., 71, 1457. https://doi.org/10.1021/j100864a042
  36. Somy, A., Mehrnia, M. R., Amrei, H. D., Ghanizadeh, A., Safari, M., 2009, Adsorption of carbon dioxide using impregnated activated carbon promoted by zinc, Int. J. Greenhouse Gas Control, 3(3), 249-254. https://doi.org/10.1016/j.ijggc.2008.10.003
  37. Wang, C. F., Li, J. S., Wang, L. J., Sun, X. Y., 2008, Influence of NaOH concentrations on synthesis of pure-form zeolite A from fly ash using two-stage method, J. Hazard. Mater., 155(1-2), 58-64. https://doi.org/10.1016/j.jhazmat.2007.11.028
  38. Yang, X., Wu, X., Hao, H., He, Z., 2008, Mechanisms and assessment of water eutrophication, J. Zhejiang Univ. Sci. B, 9, 197-209. https://doi.org/10.1631/jzus.B0710626