과제정보
이 논문은 한국연구재단의 지원을 받아 수행된 기초연구 사업임 (NRF-2022R1F1A1066209).
참고문헌
- Baek C, Davis RA, and Pipiras V (2017). Sparse seasonal and periodic vector autoregressive modeling, Computational Statistics & Data Analysis, 106, 103-126. https://doi.org/10.1016/j.csda.2016.09.005
- Baek C and Park M (2021). Sparse vector heterogeneous autoregressive modeling for realized volatility, Journal of the Korean Statistical Society, 50, 495-510. https://doi.org/10.1007/s42952-020-00090-5
- Chen C and Liu LM (1993). Joint estimation of model parameters and outlier effects in time series, Journal of the American Statistical Association, 88, 284-297.
- Davis RA, Zang P, and Zheng T (2016). Sparse vector autoregressive modeling, Journal of Computational and Graphical Statistics, 25, 1077-1096. https://doi.org/10.1080/10618600.2015.1092978
- Fan J and Li R (2001). Variable selection via nonconcave penalized likelihood and its oracle properties, Journal of the American Statistical Association, 96, 1348-1360. https://doi.org/10.1198/016214501753382273
- Huber PJ (1981). Robust Statistics, Wiley, New York.
- Lambert-Lacroix S and Zwald L (2011). Robust regression through the Huber's criterion and adaptive lasso penalty, Electronic Journal of Statistics, 5, 1015-1053.
- Lee SG and Baek C (2016). Adaptive lasso in sparse vector autoregressive models, The Korean Journal of Applied Statistics, 29, 27-39. https://doi.org/10.5351/KJAS.2016.29.1.027
- Lutkepohl H (2005). New Introduction to Multiple Time Series Analysis, Springer-Verlag, Berlin.
- Shin AJ, Park M, and Baek C (2022). Sparse vector heterogeneous autoregressive model with nonconvex penalties, Communications for Statistical Applications and Methods, 29, 53-64. https://doi.org/10.29220/CSAM.2022.29.1.053
- Tibshirani R (1996). Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society:Series B (Methodological), 58, 267-288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
- Wang H, Li G, and Jiang G (2007). Robust regression shrinkage and consistent variable selection through the lad-lasso, Journal of Business & Economic Statistics, 25, 347-355. https://doi.org/10.1198/073500106000000251
- Xu H, Caramanis C, and Mannor S (2008). Robust regression and lasso, Advances in Neural Information Processing Systems, 21, 103-126.