DOI QR코드

DOI QR Code

PEO Film Formation Behavior of AZ31 Mg Alloy under Pulse Current

펄스 전류 하에서 AZ31 마그네슘 합금의 플라즈마전해산화 피막의 형성 거동

  • Moon, Sungmo (Surface Technology Division, Korea Institute of Materials Science)
  • 문성모 (한국재료연구원 나노표면재료연구본부)
  • Received : 2022.10.24
  • Accepted : 2022.10.27
  • Published : 2022.10.31

Abstract

In this study, PEO (plasma electrolytic oxidation) film formation behavior of AZ31 Mg alloy under application of 300 Hz pulse current was studied by the analyses of V-t curve, arc generation behavior, PEO film thickness and morphology of PEO films with treatment time in 0.05 M NaOH + 0.05 M Na2SiO3 + 0.1 M NaF solution. PEO films was observed to grow after 10 s of application of pulse current together with generation of micro-arcs. PEO film grew linearly with treatment time at a growth rate of about 5.58 ㎛/min at 200 mA/cm2 of pulse current but increasing rate of film formation voltage became lowered largely with increasing treatment time after passing about 250 V, suggesting that resistivity of PEO films during micro-arc generation decreases with increasing film formation voltage at more than 250 V.

Keywords

Acknowledgement

This research was financially supported by a research grant of KIMS.

References

  1. N. V. Phuong, M. Gupta, S. Moon, Corrosion performance of magnesium phosphate conversion coating on AZ31 magnesium, Trans. Nonferrous Met. Soc. China, 27 (2017) 1087-1095. https://doi.org/10.1016/S1003-6326(17)60127-4
  2. B. R. Fazal, S. Moon, Formation of cerium conversion coatings on AZ31 magnesium alloy, J. Kor. Inst. Surf. Eng., 49 (2016) 1-13. https://doi.org/10.5695/JKISE.2016.49.1.1
  3. B. R. Fazal, S. Moon, Effect of fluoride conversion coating on the corrosion resistance and adhesion of E-painted AZ31 magnesium alloy, J. Kor. Inst. Surf. Eng., 49 (2016) 395-400. https://doi.org/10.5695/JKISE.2016.49.5.395
  4. D. Kwon, P. K. Song, S. Moon, Formation behavior and properties of PEO Films on AZ91 Mg alloy in 0.1 M NaOH + 0.05 M NaF solution containing various Na2SiO3, J. Kor. Inst. Surf. Eng., 53 (2020) 59-66.
  5. S. L. Aktug, S. Durdu, I. Kutbay, M. Usta, Effect of Na2SiO3·5H2O concentration on microstructure and mechanical properties of plasma electrolytic oxide coatings on AZ31 Mg alloy produced by twin roll casting, Ceram. Int., 42 (2016) 1246. https://doi.org/10.1016/j.ceramint.2015.09.056
  6. S. Moon, C. Yang, S. Na, Effects of hydroxide and silicate ions on the plasma electrolytic oxidation of AZ31 Mg Alloy, J. Kor. Inst. Surf. Eng., 47 (2014) 147-154. https://doi.org/10.5695/JKISE.2014.47.4.147
  7. H. Duan, C. Yan, F. Wang, Effect of electrolyte additives on performance of plasma electrolytic oxidation films formed on magnesium alloy AZ91D, Electrochim., 52 (2007) 3785-3793. https://doi.org/10.1016/j.electacta.2006.10.066
  8. S. Moon, Y. Kim, C. Yang, Effect of NaOH concentration on the PEO film formation of AZ31 magnesium alloy in the electrolyte containing carbonate and silicate Ions, J. Surf. Sci. Eng., 50 (2017) 308-314.
  9. S. Moon, D. Kwon, Anodic oxidation behavior of AZ31 Mg alloy in aqueous solutions containing various NaF concentrations, J. Kor. Inst. Surf. Eng., 55 (2022) 196-201.
  10. S. Moon, D. Kwon, Anodic oxide films formed on AZ3 magnesium alloy by plasma electrolytic oxidation method in electrolytes containing various NaF concentrations, J. Kor. Inst. Surf. Eng., 49 (2016) 225-230. https://doi.org/10.5695/JKISE.2016.49.3.225
  11. S. Stojadinovic, R. Vasilic, Jelena R. P., M. Peric, Characterization of plasma electrolytic oxidation of magnesium alloy AZ31 in alkaline solution containing fluoride, Surf. Coat. Technol., 273 (2015) 1-11. https://doi.org/10.1016/j.surfcoat.2015.03.032
  12. B. Kazanski, A. Kossenko, M. Zinigrad, A. Lugovskoy, Fluoride ions as modifiers of the oxide layer produced by plasma electrolytic oxidation on AZ91D magnesium alloy, Appl. Surf. Sci., 287 (2013) 461-466. https://doi.org/10.1016/j.apsusc.2013.09.180
  13. J. Liang, B. Guo, J. Tian, H. Liu, J. Zhou,T. Xu, Effect of potassium fluoride in electrolytic solution on the structure and properties of microarc oxidation coatings on magnesium alloy, Appl. Surf. Sci., 252 (2005) 345-351. https://doi.org/10.1016/j.apsusc.2005.01.007
  14. S. Moon, Y. Kim, Anodic oxidation behavior of AZ31 magnesium alloy in aqueous electrolyte containing various Na2CO3 concentrations, J. Kor. Inst. Surf. Eng., 49 (2016) 331-338. https://doi.org/10.5695/JKISE.2016.49.4.331
  15. S. Moon, J. Kim, Effect of Na3PO4 concentration on the formation behavior of PEO films on AZ31 Mg alloy, J. Kor. Inst. Surf. Eng., 52 (2019) 265-274.
  16. S. Yagi, A. Sengoku, K. Kubota, E. Matsubara, Surface modification of ACM522 magnesium alloy by plasma electrolytic oxidation in phosphate electrolyte, Corros. Sci., 57 (2012) 74-80. https://doi.org/10.1016/j.corsci.2011.12.032
  17. J. Liang, P. B. Srinivasan, C. Blawert, M, Stormer, W. Dietzel, Electrochemical corrosion behaviour of plasma electrolytic oxidation coatings on AM50 magnesium alloy formed in silicate and phosphate based electrolytes, Electrochim. Acta, 54 (2009) 3842-3850. https://doi.org/10.1016/j.electacta.2009.02.004
  18. R. Arrabal, E. Matykina, F. Viejo, P. Skeldon, G. E. Thompson, Corrosion resistance of WE43 and AZ91D magnesium alloys with phosphate PEO coatings, Corros. Sci., 50 (2008) 1744-1752. https://doi.org/10.1016/j.corsci.2008.03.002
  19. S. Moon, A blade-abrading method for surface pretreatment of Mg alloys, J. Kor. Inst. Surf. Eng. 48 (2015) 194-198. https://doi.org/10.5695/JKISE.2015.48.5.194