DOI QR코드

DOI QR Code

Viscoplasticity model stochastic parameter identification: Multi-scale approach and Bayesian inference

  • Nguyen, Cong-Uy (Royallieu Center of Research, University of Technology of Compiègne/Sorbonne University Alliance) ;
  • Hoang, Truong-Vinh (Chair of Mathematics for Uncertainty Quantification, RWTH Aachen University) ;
  • Hadzalic, Emina (Faculty of Civil Engineering, University of Sarajevo) ;
  • Dobrilla, Simona (Royallieu Center of Research, University of Technology of Compiègne/Sorbonne University Alliance) ;
  • Matthies, Hermann G. (Institute of Scientific Computing, Technical University of Braunschweig) ;
  • Ibrahimbegovic, Adnan (Royallieu Center of Research, University of Technology of Compiègne/Sorbonne University Alliance)
  • Received : 2022.04.01
  • Accepted : 2022.06.26
  • Published : 2022.10.25

Abstract

In this paper, we present the parameter identification for inelastic and multi-scale problems. First, the theoretical background of several fundamental methods used in the upscaling process is reviewed. Several key definitions including random field, Bayesian theorem, Polynomial chaos expansion (PCE), and Gauss-Markov-Kalman filter are briefly summarized. An illustrative example is given to assimilate fracture energy in a simple inelastic problem with linear hardening and softening phases. Second, the parameter identification using the Gauss-Markov-Kalman filter is employed for a multi-scale problem to identify bulk and shear moduli and other material properties in a macro-scale with the data from a micro-scale as quantities of interest (QoI). The problem can also be viewed as upscaling homogenization.

Keywords

Acknowledgement

This work is financially supported under the research project MS3C by Agence Nationale de la Recherche (ANR-20-CE46-0012-01), MEAE (project CESPA), IUF (project MS1479) and the research fund from the Institute of Scientific Computing, Technical University of Braunschweig. All this support is gratefully acknowledged. These sources of funding are gratefully acknowledged.

References

  1. Armstrong, P.J. and Frederick, C.O. (1966). A Mathematical Representation of the Multiaxial Bauschinger Effect, Vol. 731, Berkeley Nuclear Laboratories, Berkeley, CA.
  2. Bui, D.K., Nguyen, T.N., Ngo, T.D. and Nguyen, X.H. (2020), "An artificial neural network (ANN) expert system enhanced with the electromagnetism-based firefly algorithm (EFA) for predicting the energy consumption in buildings", Energy, 190, 116370. https://doi.org/10.1016/j.energy.2019.116370.
  3. Chatzigeorgiou, G., Javili, A. and Steinmann, P. (2015), "Multiscale modelling for composites with energetic interfaces at the micro-or nanoscale", Math. Mech. Solid., 20(9), 1130-1145. https://doi.org/10.1177/1081286513516122.
  4. Chiachio-Ruano, J., Chiachio-Ruano, M. and Sankararaman, S. (2021), Bayesian Inverse Problems: Fundamentals and Engineering Applications, CRC Press, USA.
  5. Friedman, N., Kumar, P., Zander, E. and Matthies, H.G. (2016), "Bayesian calibration of model coefficients for a simulation of flow over porous material involving SVM classification", PAMM, 16(1), 669-670. https://doi.org/10.1002/pamm.201610323.
  6. Galetzka, A., Bontinck, Z., Romer, U. and Schops, S. (2019), "A multilevel Monte-Carlo method for high-dimensional uncertainty quantification of low-frequency electromagnetic devices", IEEE Trans. Magnet., 55(8), 1-12. https://doi.org/10.1109/TMAG.2019.2911053.
  7. Georg, N. and Romer, U. (2020), "Conformally mapped Polynomial chaos expansions for maxwell's source problem with random input data", Int. J. Numer. Model.: Electr. Network., Dev. Field., 33(6), 2776. https://doi.org/10.1002/jnm.2776.
  8. Gerasimov, T., Romer, U., Vondrejc, J., Matthies, H.G. and De Lorenzis, L. (2020), "Stochastic phase-field modeling of brittle fracture: Computing multiple crack patterns and their probabilities", Comput. Meth. Appl. Mech. Eng., 372, 113353. https://doi.org/10.1016/j.cma.2020.113353.
  9. Ghanem, R., Soize, C., Mehrez, L. and Aitharaju, V. (2020), "Probabilistic learning and updating of a digital twin for composite material systems", Int. J. Numer. Meth. Eng., 1-17. https://doi.org/10.1002/nme.6430.
  10. Goswami, S., Anitescu, C., Chakraborty, S. and Rabczuk, T. (2020), "Transfer learning enhanced physics informed neural network for phase-field modeling of fracture", Theor. Appl. Fract. Mech., 106, 102447. https://doi.org/10.1016/j.tafmec.2019.102447.
  11. Gravemeier, V., Gee, M.W., Kronbichler, M. and Wall, W.A. (2010), "An algebraic variational multiscale-multigrid method for large eddy simulation of turbulent flow", Comput. Meth. Appl. Mech. Eng., 199(13-16), 853-864. https://doi.org/10.1016/j.cma.2009.05.017.
  12. Hadzalic, E., Ibrahimbegovic, A. and Dolarevic, S. (2018), "Fluid-structure interaction system predicting both internal pore pressure and outside hydrodynamic pressure", Couple. Syst. Mech., 7, 659-668. https://doi.org/10.12989/csm.2018.7.6.649.
  13. Hadzalic, E., Ibrahimbegovic, A. and Dolarevic, S. (2019), "Theoretical formulation and seamless discrete approximation for localized failure of saturated poro-plastic structure interacting with reservoir", Comput. Struct., 214, 73-93. https://doi.org/10.1016/j.compstruc.2019.01.003.
  14. Hadzalic, E., Ibrahimbegovic, A. and Dolarevic, S. (2020), "3D thermo-hydro-mechanical coupled discrete beam lattice model of saturated poro-plastic medium", Couple. Syst. Mech., 9, 113-134. https://doi.org/10.12989/csm.2020.9.2.125.
  15. Hoang, T.V. and Matthies, H.G. (2021), "An efficient computational method for parameter identification in the context of random set theory via Bayesian inversion", Int. J. Uncertain. Quantif., 11(4), 1-18. https://doi.org/10.1615/Int.J.UncertaintyQuantification.2020031869.
  16. Hoang, T.V., Krumscheid, S., Matthies, H.G. and Tempone, R. (2021), "Machine learning-based conditional mean filter: A generalization of the ensemble kalman filter for nonlinear data assimilation", Proc. Appl. Math. Mech., 20, 1. https://doi.org/10.1002/pamm.202000320.
  17. Ibrahimbegovic, A. (2009), Nonlinear Solid Mechanics: Theoretical Formulations and Finite Element Solution Methods, Springer Science & Business Media, Dordrecht, Netherland.
  18. Ibrahimbegovic, A. and Matthies, H.G. (2017), "Probabilistic multiscale analysis of inelastic localized failure in solid mechanics", Comput. Assist. Meth. Eng. Sci., 19(3), 277-304.
  19. Ibrahimbegovic, A., Matthies, H.G. and Karavelic, E. (2020), "Reduced model of macro-scale stochastic plasticity identification by Bayesian inference: Application to quasi-brittle failure of concrete", Comput. Meth. Appl. Mech. Eng., 372, 113428. https://doi.org/10.1016/j.cma.2020.113428.
  20. Ibrahimbegovic, A., Niekamp, R., Kassiotis, C., Markovic, D. and Matthies, H.G. (2014), "Code-coupling strategy for efficient development of computer software in multiscale and multiphysics nonlinear evolution problems in computational mechanics", Adv. Eng. Softw., 72, 8-17. https://doi.org/10.1016/j.advengsoft.2013.06.014.
  21. Ibrahimbegovic, A., Rukavina, I. and Suljevic. S. (2021), "Multiscale model with embedded discontinuity discrete approximation capable of representing full set of 3d failure modes for heterogeneous materials with no scale separation", Int. J. Multisc. Comput. Eng., 1-32. https://doi.org/10.1615/IntJMultCompEng.2021038378.
  22. Janicke, R., Diebels, S., Sehlhorst, H.G. and Duster, A. (2009), "Two-scale modelling of micromorphic continua", Continuum Mech. Thermodyn., 21(4), 297-315. https://doi.org/10.1007/s00161-009-0114-4.
  23. Janicke, R., Larsson, F. and Runesson, K. (2020), "A poro-viscoelastic substitute model of fine-scale poroelasticity obtained from homogenization and numerical model reduction", Comput. Mech., 65(4), 1063-1083. https://doi.org/10.1007/s00466-019-01808-x.
  24. Janouchova, E., Sykora, J. and Kucerova, A. (2018), "Polynomial chaos in evaluating failure probability: A comparative study", Appl. Math., 63(6), 713-737. https://doi.org/10.21136/AM.2018.0335-17.
  25. Kim, J. and Song, J. (2021), "Quantile surrogates and sensitivity by adaptive gaussian process for efficient reliability-based design optimization", Mech. Syst. Signal Pr., 161, 107962. https://doi.org/10.1016/j.ymssp.2021.107962.
  26. Klinge, S., Bartels, A. and Steinmann, P. (2012), "Modeling of curing processes based on a multi-field potential. single-and multiscale aspects", Int. J. Solid. Struct., 49(17), 2320-2333. https://doi.org/10.1016/j.ijsolstr.2012.04.034.
  27. Kowalsky, U., Zumendorf, T. and Dinkler, D. (2007), "Random fluctuations of material behaviour in fe-damage-analysis", Comput. Mater. Sci., 39(1), 8-16. https://doi.org/10.1016/j.commatsci.2006.05.004.
  28. Kozar, I., Bede, N., Bogdanic, A. and Mrakovcic, S. (2021), "Data driven inverse stochastic models for fiber reinforced concrete", Couple. Syst. Mech., 10(6), 509-520. https://doi.org/10.12989/csm.2021.10.6.509.
  29. Kucerova, A. and Leps, M. (2014), "Soft computing-based calibration of microplane m4 model parameters: Methodology and validation", Adv. Eng. Softw., 72, 226-235. https://doi.org/10.1016/j.advengsoft.2014.01.013.
  30. Kumar, P., Friedman, N., Zander, E. and Radespiel, R. (2018), "Bayesian calibration of volume averaged RANS model parameters for turbulent flow simulations over porous materials", New Results in Numerical and Experimental Fluid Mechanics XI, 479-488.
  31. Le, T.T. and Le, M.V. (2021), "Development of user-friendly kernel-based gaussian process regression model for prediction of load-bearing capacity of square concrete-filled steel tubular members", Mater. Struct., 54(2), 1-24. https://doi.org/10.1617/s11527-021-01646-5.
  32. Mares, T., Janouchova, E. and Kucerova, A. (2016), "Artificial neural networks in the calibration of nonlinear mechanical models", Adv. Eng. Softw., 95, 68-81. https://doi.org/10.1016/j.advengsoft.2016.01.017.
  33. Marsili, F., Friedman, N. and Croce, P. (2015), "Parameter identification via gPCE-based stochastic inverse methods for reliability assessment of existing structures", International Probabilistic Workshop, 112-123. https://doi.org/10.13140/RG.2.1.1843.5600.
  34. Matthies, H.G., Litvinenko, A., Rosic, B.V. and Zander, E. (2016), "Bayesian parameter estimation via filtering and functional approximations", arXiv preprint, arXiv:1611.09293. https://doi.org/10.48550/arXiv.1611.09293.
  35. Matthies, H.G., Zander, E., Rosic, B.V. and Litvinenko, A. (2016), "Parameter estimation via conditional expectation: a Bayesian inversion", Adv. Model. Simul. Eng. Sci., 3(1), 1-21. https://doi.org/10.1186/s40323-016-0075-7.
  36. Matthies, H.G., Zander, E., Rosic, B.V., Litvinenko, A. and Pajonk, O. (2016), "Inverse problems in a Bayesian setting", Comput. Meth. Solid. Fluid., 245-286. https://doi.org/10.1007/978-3-319-27996-1_10.
  37. Nguyen, C.U. and Ibrahimbegovic, A. (2020), "Hybrid-stress triangular finite element with enhanced performance for statics and dynamics", Comput. Meth. Appl. Mech. Eng., 372, 11338. https://doi.org/10.1016/j.cma.2020.113381.
  38. Nguyen, C.U. and Ibrahimbegovic, A. (2020), "Isotropic damage model of Kachanov: Theoretical formulation and numerical simulation", The 2020 International Conference on Advances in Coupled Systems Mechanics (ACSM20), Seoul, Korea.
  39. Nguyen, C.U. and Ibrahimbegovic, A. (2020), "Visco-plasticity stress-based solid dynamics formulation and time-stepping algorithms for stiff case", Int. J. Solid. Struct., 196-197, 154-170. https://doi.org/10.1016/j.ijsolstr.2020.04.018.
  40. Nguyen, C.U., Huynh, T.C. and Kim, J.T. (2017), "Damage identification of wind turbine tower using modal properties-based artificial neural networks", The 13th International Workshop on Advanced Smart Materials and Smart Structures Technology, Tokyo, Japan.
  41. Nguyen, C.U., Huynh, T.C. and Kim, J.T. (2018), "Vibration-based damage detection in wind turbine towers using artificial neural networks", Struct. Monit. Mainten., 5(4), 507. https://doi.org/10.12989/smm.2018.5.4.507.
  42. Nguyen, T.V.M., Nguyen, L.T.K., Rabczuk, T. and Zhuang, X. (2020), "A surrogate model for computational homogenization of elastostatics at finite strain using high-dimensional model representation-based neural network", Int. J. Numer. Meth. Eng., 121(21), 4811-4842. https://doi.org/10.1002/nme.6493.
  43. Noii, N., Khodadadian, A. and Wick, T. (2020), "Bayesian inversion for anisotropic hydraulic phase-field fracture", Comput. Meth. Appl. Mech. Eng., 386, 114118. https://doi.org/10.1016/j.cma.2021.114118.
  44. Romer, U. (2021), "Methods of uncertainty analysis and quantification", Technical University of Braunschweig, Lecture.
  45. Romer, U., Bollhofer, M., Sreekumar, H., Blech, C. and Langer, S. (2021), "An adaptive sparse grid rational arnoldi method for uncertainty quantification of dynamical systems in the frequency domain", Int. J. Numer. Meth. Eng., 122, 5487-5511. https://doi.org/10.1002/nme.6761.
  46. Rosic, B.V., Litvinenko, A., Pajonk, O. and Matthies, H.G. (2012), "Sampling-free linear Bayesian update of polynomial chaos representations", J. Comput. Phys., 231(17), 5761-5787. https://doi.org/10.1016/j.jcp.2012.04.044.
  47. Rosic, B.V., Sykora, J., Pajonk, O., Kucerova, A. and Matthies, H.G. (2014), "Comparison of numerical approaches to Bayesian updating", Technical University of Braunschweig, Report.
  48. Rukavina, I., Ibrahimbegovic, A., Do, X.N. and Markovic, D. (2019), "Ed-fem multiscale computation procedure for localized failure", Couple. Syst. Mech., 8(2), 111-127. https://doi.org/10.12989/csm.2019.8.2.111.
  49. Rus, G., Palma, R. and Perez-Aparicio, J.L. (2006), "Damage identification inverse problem for a piezoelectric material", Third European Workshop on Structural Health Monitoring, Granada, Spain.
  50. Sarfaraz, M.S., Rosic, B.V., Matthies, H.G. and Ibrahimbegovic, A. (2018), "Stochastic upscaling via linear Bayesian updating", Couple. Syst. Mech., 7, 211-231. https://doi.org/10.12989/csm.2018.7.2.211.
  51. Sarfaraz, M.S., Rosic, B.V., Matthies, H.G. and Ibrahimbegovic, A. (2020), "Bayesian stochastic multi-scale analysis via energy considerations", Adv. Model. Simul. Eng. Sci., 7(1), 1-35. https://doi.org/10.1186/s40323-020-00185-y.
  52. Schott, B., Rasthofer, U., Gravemeier, V. and Wall, W.A. (2015), "A face-oriented stabilized nitsche-type extended variational multiscale method for incompressible two-phase flow", Int. J. Numer. Meth. Eng., 104(7), 721-748. https://doi.org/10.1002/nme.4789.
  53. Schuler, T., Manke, R., Janicke, R., Radenberg, M. and Steeb, H. (2013), "Multi-scale modelling of elastic/viscoelastic compounds", J. Appl. Math. Mech., 93(2-3), 126-137. https://doi.org/10.1002/zamm.201200055.
  54. Smith, R.C. (2013), Uncertainty Quantification: Theory, Implementation, and Applications, SIAM, Philadelphia, USA.
  55. Stabile, G. and Rosic, B.V. (2020), "Bayesian identification of a projection-based reduced order model for computational fluid dynamics", Comput. Fluid., 201, 104477. https://doi.org/10.1016/j.compfluid.2020.104477.
  56. Wu, T., Rosic, B.V., De Lorenzis, L. and Matthies, H.G. (2021), "Parameter identification for phase-field modeling of fracture: a Bayesian approach with sampling free update", Comput. Mech., 67(2), 435-453. https://doi.org/10.1007/s00466-020-01942-x.
  57. Xiu, D. (2010), Numerical Methods for Stochastic Computations, Princeton University Press, Princeton, New Jersey, USA.
  58. Xiu, D. and Karniadakis, G.E. (2002), "The wiener-askey polynomial chaos for stochastic differential equations", SIAM J. Scientif. Comput., 24(2), 619-644. https://doi.org/10.1137/S1064827501387826.
  59. Xiu, D. and Karniadakis, G.E. (2002), "The Wiener-Askey polynomial chaos for stochastic differential equations", SIAM J. Scientif. Comput., 14(2), 619-644. https://doi.org/10.1137/S1064827501387826.
  60. Yi, S.R., Wang, Z. and Song, J. (2019), "Gaussian mixture-based equivalent linearization method (gm-elm) for fragility analysis of structures under nonstationary excitations", Earthq. Eng. Struct. Dyn., 48(10), 1195-1214. https://doi.org/10.1002/eqe.3185.
  61. Zander, E. (2011), "SGLIB", Institute of Scientific Computing-Technical University of Braunschweig. https://github.com/ezander/sglib-testing.