DOI QR코드

DOI QR Code

THE DIFFERENCE OF HYPERHARMONIC NUMBERS VIA GEOMETRIC AND ANALYTIC METHODS

  • Altuntas, Cagatay (Department of Mathematics Engineering Faculty of Science and Literature Istanbul Technical University) ;
  • Goral, Haydar (Department of Mathematics Izmir Institute of Technology) ;
  • Sertbas, Doga Can (Department of Mathematics Faculty of Sciences and Literature Cukurova University)
  • Received : 2021.10.12
  • Accepted : 2022.09.01
  • Published : 2022.11.01

Abstract

Our motivation in this note is to find equal hyperharmonic numbers of different orders. In particular, we deal with the integerness property of the difference of hyperharmonic numbers. Inspired by finiteness results from arithmetic geometry, we see that, under some extra assumption, there are only finitely many pairs of orders for two hyperharmonic numbers of fixed indices to have a certain rational difference. Moreover, using analytic techniques, we get that almost all differences are not integers. On the contrary, we also obtain that there are infinitely many order values where the corresponding differences are integers.

Keywords

Acknowledgement

The authors are deeply grateful to the anonymous referee for many constructive remarks and suggestions, especially for pointing out Fact 3.12 which improved the error term in Theorem B.

References

  1. E. Alkan, H. Goral, and D. C. Sertbas, Hyperharmonic numbers can rarely be integers, Integers 18 (2018), Paper No. A43, 15 pp.
  2. R. A. Amrane and H. Belbachir, Non-integerness of class of hyperharmonic numbers, Ann. Math. Inform. 37 (2010), 7-11.
  3. R. A. Amrane and H. Belbachir, Are the hyperharmonics integral? A partial answer via the small intervals containing primes, C. R. Math. Acad. Sci. Paris 349 (2011), no. 3-4, 115-117. https://doi.org/10.1016/j.crma.2010.12.015
  4. T. M. Apostol, Introduction to Analytic Number Theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1976.
  5. R. C. Baker, G. Harman, and J. Pintz, The difference between consecutive primes. II, Proc. London Math. Soc. (3) 83 (2001), no. 3, 532-562. https://doi.org/10.1112/plms/83.3.532
  6. Y. F. Bilu and R. F. Tichy, The Diophantine equation f(x) = g(y), Acta Arith. 95 (2000), no. 3, 261-288. https://doi.org/10.4064/aa-95-3-261-288
  7. J. H. Conway and R. K. Guy, The book of Numbers, Copernicus, New York, 1996. https://doi.org/10.1007/978-1-4612-4072-3
  8. H. Cramer, On the order of magnitude of the difference between consecutive prime numbers, Acta Arith. 2 (1936), no. 1, 23-46. https://doi.org/10.4064/aa-2-1-23-46
  9. G. Faltings, Endlichkeitss¨atze f¨ur abelsche Variet¨aten ¨uber Zahlk¨orpern, Invent. Math. 73 (1983), no. 3, 349-366. https://doi.org/10.1007/BF01388432
  10. W. Fulton, Algebraic curves. An introduction to algebraic geometry, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York, 1969.
  11. H. Goral and D. C. Sertba,s, Almost all hyperharmonic numbers are not integers, J. Number Theory 171 (2017), 495-526. https://doi.org/10.1016/j.jnt.2016.07.023
  12. H. Goral and D. C. Sertbas, Euler sums and non-integerness of harmonic type sums, Hacet. J. Math. Stat. 49 (2020), no. 2, 586-598. https://doi.org/10.15672/hujms.544489
  13. D. R. Heath-Brown, The differences between consecutive primes. III, J. London Math. Soc. (2) 20 (1979), no. 2, 177-178. https://doi.org/10.1112/jlms/s2-20.2.177
  14. M. Hindry and J. H. Silverman, Diophantine geometry, Graduate Texts in Mathematics, 201, Springer-Verlag, New York, 2000. https://doi.org/10.1007/978-1-4612-1210-2
  15. J. Kurschak, On the harmonic series, Matematikaies Fizikai Lapok 27 (1918), 299-300.
  16. R. Lidl, G. L. Mullen, and G. Turnwald, Dickson polynomials, Pitman Monographs and Surveys in Pure and Applied Mathematics, 65, Longman Scientific & Technical, Harlow, 1993.
  17. I. Mezo, About the non-integer property of hyperharmonic numbers, Ann. Univ. Sci. Budapest. Eotvos Sect. Math. 50 (2007), 13-20 (2009).
  18. SageMath, the Sage Mathematics Software System (Version 8.3), (2018). The Sage Developers, http://www.sagemath.org
  19. A. Selberg, On the normal density of primes in small intervals, and the difference between consecutive primes, Arch. Math. Naturvid. 47 (1943), no. 6, 87-105.
  20. D. C. Sertba,s, Harmonic type sums and their arithmetic properties, PhD thesis, Koc University, 2020.
  21. D. C. Sertbas, Hyperharmonic integers exist, C. R. Math. Acad. Sci. Paris 358 (2020), no. 11-12, 1179-1185. https://doi.org/10.5802/crmath.137
  22. C. L. Siegel, Uber einige Anwendungen diophantischer Approximationen, Abhandlungen der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse Nr. 1, 1929.
  23. J. H. Silverman and J. Tate, Rational Points on Elliptic Curves, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1992. https://doi.org/10.1007/978-1-4757-4252-7
  24. L. Theisinger, Bemerkung uber die harmonische Reihe, Monatsh. Math. Phys. 26 (1915), no. 1, 132-134. https://doi.org/10.1007/BF01999444