
J. Korean Math. Soc. 59 (2022), No. 6, pp. 1083–1101

https://doi.org/10.4134/JKMS.j210626

pISSN: 0304-9914 / eISSN: 2234-3008

D-SOLUTIONS OF BSDES WITH POISSON JUMPS

Imen Hassairi

Abstract. In this paper, we study backward stochastic differential equa-

tions (BSDEs shortly) with jumps that have Lipschitz generator in a gen-

eral filtration supporting a Brownian motion and an independent Poisson
random measure. Under just integrability on the data we show that such

equations admit a unique solution which belongs to class D.

1. Introduction

The notion of non-linear BSDEs was introduced by Pardoux and Peng ([5]).
These equations have been well studied because they are connected with a lot
of applications especially in mathematical finance, stochastic control, partial
differential equations, and so on.

Tang and Li [9] added into the BSDE a jump term that is driven by a
Poisson random measure independent of the Brownian motion. The authors
obtained the existence and uniqueness of a solution to such an equation when
the terminal condition is square integrable and the generator is Lipschitz con-
tinuous with respect to the variables. Since then, a lot of papers (one can see
[3,4,7]) studied BSDEs with jumps due to the connections of this subject with
mathematical finance and stochastic control.

Later, Situ Rong [8] proved an existence result when the terminal time is a
bounded random stopping time and the coefficient is non-Lipschitzian.

Recently, Song Yao analyzes in his work [10] the BSDEs with jumps with un-
bounded random time horizon and under a non-Lipschitz generator condition.
He showed the existence and uniqueness of an Lp-solution when the terminal
condition is p-integrable for any p ∈ (1,∞). For a given V ∈ L2, unlike the
Brownian stochastic integrals case, the Burkholder-Davis-Gundy inequality is
not applicable. So in his paper, he generalized the Poisson stochastic integral
for a random field V ∈ Lp.

In our paper, we investigate the existence and uniqueness of D-solution for
BSDEs when the noise is driven by a Brownian motion and an independent
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1084 I. HASSAIRI

random Poisson measure. This paper generalizes the results of Briand et al.
[1] and Song Yao [10]. We suppose that f is Lipschitz. Concerning the data,
we assume that an integrability condition is hold.

Our first motivation to consider this paper is related to the dynamic risk
measure that had been introduced in a Brownian framework (see [7]) defined
as the solutions of BSDEs. Many studies have been recently done on such
dynamic risk measure, especially linked to robust optimization problems and
optimal stopping problems. It is well known that optimal switching problems
under weak assumptions help managers’ resource retention to make the optimal
decision under uncertainty. On the other hand, this present paper opens the
door to heading to the study of the existence and uniqueness of D-solutions for
reflected BSDEs with jumps. Finally, to our knowledge there is no such result
in the literature.

The outline of this article is as follows: the following section contains all the
notations and useful assumptions for the rest of the paper. In Section 3, we
showed uniqueness result and the essential estimates. Section 4 is devoted to
the case where the data are in Lp for p ∈ (1, 2) then we treat the case p = 1
and we showed the desired existence result.

2. Notations and assumptions

Let (Ω,F , (Ft)t≤T ) be a stochastic basis such that (Ft)t≤T is a right con-
tinuous increasing family of complete sub σ-algebras of F and F0 contains N
the set of all P-null sets of F , Ft+ = ∩ε>0Ft+ε = Ft, ∀t ≤ T . We assume that
(Ft)t≤T is supported by the two mutually independent processes:

(i) let B = (Bt)0≤t≤T be a standard d-dimensional Brownian motion.
(ii) let p be a U -valued Poisson point process on (Ω,F ,P) for some finite ran-

dom Poisson measure µ on R+×U , where U ⊂ Rm \{0}, the counting measure
µ(dt, de) of p on [0, T ] × U has the compensator E[µ(dt, de)] = λ(de)dt. The
corresponding compensated Poisson random measure µ̃(dt, de) := µ(dt, de) −
dtλ(de) is a martingale with respect to F . The measure λ is σ-finite on U
satisfying ∫

U

(1 ∧ |e|2)λ(de) < +∞.

In this paper, let P̃ denote the σ-algebra of Ft-predictable sets on Ω× [0, T ].
In addition, we assume that

Ft = σ[

∫
A×[0,s]

µ(ds, de), s ≤ t, A ∈ U ] ∪ σ[Bs, s ≤ t] ∪N .

For a given adapted rcll process (Xt)t≤T and for any t ≤ T we set Xt− =
lims↗tXs with the convention that X0− = X0 and ∆Xt = Xt −Xt− . For any
scenario ω ∈ Ω, let Dp(ω) collect all jump times of the path p(ω) which is a
countable subset of (0, T ].
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Let us introduce the following spaces of processes and notations considered
in this work, for all p > 0,

• Sp is the space of R -valued, Ft-adapted and rcll processes (Xt)t∈[0,T ]

such that

‖X‖Sp = E
[

sup
t≤T
|Xt|p

] 1
p

< +∞.

If p ≥ 1, ‖·‖Sp is a norm on Sp and if p ∈ (0, 1), (X,X ′) 7→ ‖X −X ′‖Sp
is a distance on Sp. Under this metric, Sp is complete.
• Mp denotes the set of Rn-valued and Ft-predictably measurable pro-

cesses (Xt)t∈[0,T ] such that

‖X‖Mp = E
[(∫ T

0

|Xs|2 ds
)p/2] 1

p

< +∞.

For p ≥ 1,Mp is a Banach space endowed with this norm and for p ∈
(0, 1), Mp is a complete metric space with the resulting distance. For
all β ∈ (0, 1] let us defineMβ as the set of Ft-progressively measurable
processes (Xt)t∈[0,T ] with values in Rd such that

‖X‖Mβ = E
[(∫ T

0

|Xs|2 ds
)β/2]

< +∞.

We denote by M0 the set of P-measurable processes Z := (Zt)t≤T

with values in Rd such that
∫ T
0
|Zs(ω)|2ds <∞, P− a.s..

• Lploc is the space of all P̃ ⊗B(U)-measurable mappings V : Ω× [0, T ]×
U → R such that

∫ T
0

∫
U
|Vs(e)|pλ(de)ds < ∞. Let Lp be the set of all

V ∈ Lploc such that ‖V ‖Lp :=

(
E
∫ T
0

∫
U
|Vs(e)|pλ(de)ds

) 1
p

< +∞.

The stochastic integral with respect to the compensated Poisson random mea-
sure µ̃(dt, de) is usually defined for locally square integrable random mappings
V ∈ L2

loc. We recall, in the following lemma, a generalization of Poisson sto-
chastic integrals for random mappings in Lploc for p ∈ [1, 2). For more details
on the proof we refer the reader to Lemma 1.1 in [10].

Lemma 2.1. Let p ∈ [1, 2), we assign M as the Poisson stochastic integral

(2.1)

∫
[0,T ]

∫
U

Vs(e)µ̃(ds, de)

for any V ∈ Lp. Analogous to the classic extension of Poisson stochastic
integrals from L2 to L2

loc, one can define the stochastic integral (2.1) for any
V ∈ Lploc, which is a rcll local martingale with quadratic variation

[M,M ]t =

∫ t

0

∫
U

|Vs(e)|2µ(ds, de)
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and whose jump process satisfies ∆Mt(ω) = 1t∈Dp(ω)
V (ω, t, p(ω)), ∀t ∈ (0, T ].

This generalized Poisson stochastic integral is still linear in V ∈ Lploc.

The above lemma will be useful and plays a crucial role in the rest of the
paper.

Let us recall that a process X belongs to the class D if the family of random
variables {Xτ , τ ∈ T } is uniformly integrable with T is the set of all Ft-
stopping times τ ∈ [0, T ], P − a.s.. We say that a sequence (τk)k∈N ⊂ T is
stationary if P(lim infk→∞{τk = T}) = 1. In ([2], p. 90) it is observed that
the space of continuous, adapted processes from class D is complete under the
norm

‖X‖D = sup
τ∈T

E[|Xτ |].

In this paper, we consider the following assumptions:
(A1) A terminal value ξ which is an R-valued, FT -measurable random vari-

able such that E[|ξ|] <∞;
(A2) A random function f : [0, T ] × Ω × R × Rd × L → R which with

(t, ω, y, z, v) associates f(t, ω, y, z, v) and which is P̃ ⊗B(R1+d)⊗B(L)-measur-
able. In addition we assume:

(i) the process (f(t, 0, 0, 0))t≤T is dP⊗ dt-integrable, i.e.,

E
[ ∫ T

0

|f(s, 0, 0, 0)|ds
]
<∞;

(ii) f is uniformly Lipschitz in (y, z, v), i.e., there exists a constant κ ≥ 0
such that for any t ∈ [0, T ], y, y′ ∈ R, z, z′ ∈ Rd and v, v′ ∈ Lp we have

P− a.s., |f(t, ω, y, z, v)− f(t, ω, y′, z′, v′)| ≤ κ(|y − y′|+ |z − z′|+ ‖ v − v′ ‖);

(iii) P− a.s.,∀r > 0,
∫ T
0
ψr(s)ds < +∞, where

ψr(t) := sup
|y|≤r

|f(t, y, 0, 0)− f(t, 0, 0, 0)| .

(iv) There exist two constants γ ≥ 0, α ∈ (0, 1) and a non-negative progres-

sively measurable process g such that E[
∫ T
0
gsds] <∞ and

|f(t, y, z, v)− f(t, y, 0, 0)| ≤ γ(gt + |y|+ |z|+ ‖v‖Lp)α,

t ∈ [0, T ], y ∈ R and z ∈ Rd.
Note that if f does not depend on z and v, the latter assumption is satisfied.
To begin with, let us now introduce the notion of D-solutions of BSDEs with

jumps which we consider throughout this paper.

Definition 2.2. A triplet of processes (Y,Z, V ) := (Yt, Zt, Vt)t≤T with values
in R1+d×L1 is called a solution of the BSDE with jumps associated with (f, ξ)
if the following holds:

(2.2)

{
Y ∈ D, Z ∈M0 and V ∈ L1;

Yt=ξ+
∫ T
t
f(s, Ys, Zs, Vs)ds−

∫ T
t
ZsdBs−

∫ T
t

∫
U
Vs(e)µ̃(ds, de), t≤T ;
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The solution has jumps which arise naturally since the noise contains a
random Poisson measure part.

We are now going to prove the uniqueness of the solution for the (2.2) under
the above assumptions on f and ξ.

3. Uniqueness and existence of a solution

3.1. A priori estimates

First of all, we establish some estimates regarding solutions of BSDEs with
jumps (2.2). The results of Briand et al. [1] inspired us to get these estimates
that are very useful for the study of existence and uniqueness of solutions. The
difficulty here comes from the lack of integrability. These basic inequalities
proved in the following Lemma 3.1 and Proposition 3.2 gives rise to a priori
estimate result of D-soltuions of BSDEs with Poisson jumps, both of which will
play crucial and important roles in the proof of our main result in Theorem
3.6.

Lemma 3.1. Let (Y, Z, V ) be a solution to BSDE (2.2) and assume that for

p > 0, (
∫ T
0
f(s, 0, 0, 0)ds)p is integrable. If Y ∈ Sp, then Z ∈ Mp, V ∈ L and

there exists a constant Cp,κ such that,

E
[(∫ T

0

|Zs|2ds
) p

2

+

∫ T

0

∫
U

|Vs(e)|pλ(de)ds

]
(3.1)

≤ Cp,κE
[

sup
t
|Yt|p +

(∫ T

0

|f(s, 0, 0, 0)|ds
)p]

.

Proof. Since there is a lack of integrability of the processes (Y, Z, V ), we will
proceed by localization. For each integer n, let us define the stopping time

τn = inf{t ≥ 0;

∫ t

0

|Zs|2ds+

∫ t

0

∫
U

|Vs(e)|pλ(de)ds > n} ∧ T.

The sequence (τn)n≥0 is non-decreasing and converges to T . Using Itô’s
formula with |Y |2 on [t ∧ τn, τn], we obtain

|Yt∧τn |2 +

∫ τn

t∧τn
|Zs|2ds+

∫ τn

t∧τn

∫
U

|Vs(e)|2µ(ds, de)(3.2)

= |Yτn |2 + 2

∫ τn

t∧τn
Ysf(s, Ys, Zs, Vs)ds

− 2

∫ τn

t∧τn
YsZsdBs − 2

∫ τn

t∧τn

∫
U

Ys−Vs(e)µ̃(ds, de).

But from the assumption on f , Young’s inequality (for ε > 0, ab ≤ ap

pεp + εqbq

q ,

with 1
p + 1

q = 1) and the inequality (2ab ≤ 2a2 + b2

2 ) where a, b ∈ R, we have

2Ysf(s, Ys, Zs, Vs) ≤ 2κ|Ys|2 + 2κ|Ys||Zs|+ 2κ|Ys|‖Vs‖Lp + 2|Ys|f(s, 0, 0, 0)
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≤ 2κ(1 + κ)|Ys|2 +
1

2
|Zs|2 +

p− 1

p
ε−

p
p−1 (2κ)

p
p−1 |Ys|

p
p−1

+
εp

p
‖Vs‖pLp + 2|Ys|f(s, 0, 0, 0).

Plugging the above inequality into (3.2), we get

1

2

∫ τn

t∧τn
|Zs|2ds+

∫ τn

t∧τn

∫
U

|Vs(e)|2µ(ds, de)

≤ 2κ(1 + κ) sup
s∈[0,T ]

|Ys|2 +
p− 1

p
ε−

p
p−1 (2κ)

p
p−1 sup

s∈[0,T ]

|Ys|
p
p−1

+ 2 sup
s∈[0,T ]

|Ys|
∫ τn

t∧τn
f(s, 0, 0, 0)ds+ εp

∫ τn

t∧τn

∫
U

|Vs(e)|pλ(de)ds

+ 2

∣∣∣∣ ∫ τn

t∧τn
YsZsdBs

∣∣∣∣+ 2

∣∣∣∣ ∫ τn

t∧τn

∫
U

Ys−Vs(e)µ̃(ds, de)

∣∣∣∣.
Hence, using the inequality (2ab ≤ a2 + b2), we obtain, for any ε > 0,

1

2

∫ τn

t∧τn
|Zs|2ds+

∫ τn

t∧τn

∫
U

|Vs(e)|2µ(ds, de)

≤ (2κ(1 + κ) + 1) sup
s∈[0,T ]

|Ys|2 +
p− 1

p
ε−

p
p−1 (2κ)

p
p−1 sup

s∈[0,T ]

|Ys|
p
p−1

+

(∫ τn

t∧τn
f(s, 0, 0, 0)ds

)2

+ εp
∫ τn

t∧τn

∫
U

|Vs(e)|pλ(de)ds+ 2

∣∣∣∣ ∫ τn

t∧τn
YsZsdBs

∣∣∣∣
+ 2

∣∣∣∣ ∫ τn

t∧τn

∫
U

Ys−Vs(e)µ̃(ds, de)

∣∣∣∣.
But there exists a constant Cp,κ and always choosing ε small enough getting

that, (∫ τn

t∧τn
|Zs|2ds

) p
2

+

(∫ τn

t∧τn

∫
U

|Vs(e)|2µ(ds, de)

) p
2

(3.3)

≤ Cp,κ sup
s∈[0,T ]

|Ys|p + Cp,κ,ε sup
s∈[0,T ]

|Ys|
p2

2(p−1) +

(∫ τn

t∧τn
f(s, 0, 0, 0)ds

)p
+ ε

p2

2

(∫ τn

t∧τn

∫
U

|Vs(e)|pλ(de)ds

) p
2

+

∣∣∣∣ ∫ τn

t∧τn
YsZsdBs

∣∣∣∣
p
2

+

∣∣∣∣ ∫ τn

t∧τn

∫
U

Ys−Vs(e)µ̃(ds, de)

∣∣∣∣
p
2

.

On the other hand using BDG and Young inequalities, we get

E
[∣∣∣∣ ∫ τn

t∧τn
YsZsdBs

∣∣∣∣p/2] ≤ c1pE[(∫ τn

0

|Ys|2|Zs|2ds
)p/4]
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≤ c1pE
[(

sup
s∈[0,T ]

|Ys|
)p/2(∫ τn

t∧τn
|Zs|2ds

)p/4]

≤
c21p
2

E
(

sup
s∈[0,T ]

|Ys|p
)

+
1

2
E
(∫ τn

t∧τn
|Zs|2ds

)p/2
and similarly for the Poisson stochastic part which is uniformly integrable mar-
tingale by Lemma 2.1,

E
[∣∣∣∣ ∫ τn

t∧τn

∫
U

Ys−Vs(e)µ̃(ds, de)

∣∣∣∣p/2]
≤ c2pE

[(∫ τn

t∧τn

∫
U

|Ys|2|Vs(e)|2µ(ds, de)

)p/4]
,

≤
c22p
2

E
(

sup
s∈[0,T ]

|Ys|p
)

+
1

2
E
(∫ τn

t∧τn

∫
U

|Vs(e)|2µ(ds, de)

)p/2
,

where c1p and c2p are real constants. Coming back to (3.3) and then taking
expectation, we obtain

1

2
E
[(∫ τn

t∧τn
|Zs|2ds

) p
2

+

(∫ τn

t∧τn

∫
U

|Vs(e)|2µ(ds, de)

) p
2
]

≤ Cp,κ,εE
[(

sup
s∈[0,T ]

|Ys|p
)

+

(∫ τn

t∧τn
f(s, 0, 0, 0)ds

)p
+ ε

p2

2

(∫ τn

t∧τn

∫
U

|Vs(e)|pλ(de)ds

) p
2
]
.

By the equations (5.1) and (5.2) in [10], we have

E
[(∫ τn

t∧τn

∫
U

|Vs(e)|2µ(ds, de)

) p
2
]
≤ E

[ ∫ τn

t∧τn

∫
U

|Vs(e)|pλ(de)ds

]
(3.4)

<∞.
Thus choosing ε small enough we deduce that

E
[(∫ τn

t∧τn
|Zs|2ds

) p
2

+

∫ τn

t∧τn

∫
U

|Vs(e)|pλ(de)ds

]
≤ Cp,κ,εE

[
sup

s∈[0,T ]

|Ys|p +

(∫ τn

t∧τn
|f(s, 0, 0, 0)|ds

)p]
.

Finally, letting n to infinity and using Fatou’s lemma, (3.1) follows. �

Proposition 3.2. Assume that (Y,Z, V ) is a solution to BSDE (2.2), where
Y ∈ Sp for some p > 1. Then there exists a constant Cp,κ such that

E
[

sup
t∈[0,T ]

|Yt|p +

(∫ T

0

|Zs|2ds
) p

2

+

∫ T

0

∫
U

|Vs(e)|pλ(de)ds

]
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≤ Cp,κE
[
|ξ|p +

(∫ T

0

|f(s, 0, 0, 0)|ds
)p]

.

Proof. Applying Itô’s formula to |Y |p over the interval [t, T ]. Note that

∂θ
∂yi

(y) = pyi|y|p−2, ∂2θ
∂yi∂yj

(y) = p|y|p−2δi,j + p(p− 2)yiyj |y|p−4,

where δi,j is the Kronecker delta. Thus, for every t ∈ [0, T ], we have

|Yt|p(3.5)

= |ξ|p + p

∫ T

t

Ys|Ys|p−2f(s, Ys, Zs, Vs)ds

− p
∫ T

t

Ys|Ys|p−2ZsdBs − p
∫ T

t

∫
U

Ys− |Ys− |p−2Vs(e)µ̃(ds, de)

− 1

2

∫ T

t

trace(D2θ(Ys)ZsZ
∗
s )ds

−
∫ T

t

∫
U

(|Ys− + Vs(e)|p − |Ys− |p − pYs− |Ys− |p−2Vs(e))µ(ds, de).

First remark that for a non-negative symmetric matrix Γ ∈ Rd×d we have∑
1≤i,j≤d

D2θ(y)i,jΓi,j = p|y|p−2trace(Γ) + p(p− 2)|y|p−4y∗Γy

≥ p|y|p−2trace(Γ),

then

trace(D2θ(Ys)ZsZ
∗
s ) ≥ p|y|p−2|Zs|2.(3.6)

Now for the Poisson quantity in (3.5) following the same arguments as in
([3], Prop 2) and ([10], Lemma A.4), we obtain that

−
∫ T

t

∫
U

(|Ys− + Vs(e)|p − |Ys− |p − pYs− |Ys− |p−2Vs(e))µ(ds, de)(3.7)

≤ − p(p− 1)31−p
∫ T

t

|Ys− |p−2|Vs|2µ(ds, de).

Consequently, plugging (3.6) and (3.7) in the equation (3.5) becomes

|Yt|p +
p(p− 1)

2

∫ T

t

|Ys|p−2|Zs|2ds+
p(p− 1)

2

∫ T

t

∫
U

|Ys|p−2|Vs|2µ(ds, de)

≤ |ξ|p + p

∫ T

t

Ys|Ys|p−2f(s, Ys, Zs, Vs)ds− p
∫ T

t

Ys|Ys|p−2ZsdBs

− p
∫ T

t

∫
U

Ys− |Ys− |p−2Vs(e)µ̃(ds, de).

Since f is Lipschitz then we have

pYsf(s, Ys, Zs, Vs) ≤ p|Ys|f(s, 0, 0, 0) + pκ|Ys|2 + pκ|Ys||Zs|+ pκ|Ys|‖Vs‖Lp .
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By Young’s inequality (i.e., ab ≤ a2

2ε + εb2

2 for every ε > 0), we have

pκ|Ys||Zs| ≤
p2κ2

2ε2
|Ys|2 +

ε2

2
|Zs|2,

and by the inequality ab ≤ ap

pεp + εqbq

q for every ε > 0 with 1
p + 1

q = 1, we get

pκ|Ys|‖Vs‖Lp ≤
p− 1

p
(pκ)

p
p−1 ε−

p
p−1 |Ys|

p
p−1 +

εp

p
‖Vs‖pLp .

Therefore we have

|Yt|p + (
p(p− 1)

2
− ε2

2
)

∫ T

t

|Ys|p−2|Zs|2ds(3.8)

+
p(p− 1)

2

∫ T

t

∫
U

|Ys|p−2|Vs|2µ(ds, de)

≤ |ξ|p + p

∫ T

t

|Ys|p−1f(s, 0, 0, 0)ds+ (pκ+
p2κ2

2ε2
)

∫ T

t

|Ys|pds

+
p− 1

p
(pκ)

p
p−1 ε−

p
p−1

∫ T

t

|Ys|p−1ds

+
εp

p

∫ T

t

∫
U

|Ys|p−2|Vs(e)|pλ(de)ds

− p
∫ T

t

Ys|Ys|p−2ZsdBs − p
∫ T

t

∫
U

Ys− |Ys− |p−2Vs(e)µ̃(ds, de).

Let us set Γt =
∫ t
0
Ys|Ys|p−2ZsdBs and Φt =

∫ t
0

∫
U
Ys− |Ys− |p−2Vs(e)µ̃(ds, de).

Applying BDG’s inequality we deduce that Γt and Φt are uniformly integrable
martingales. Indeed, by Young’s inequality, we have

E
(

[Γ]
1
2

T

)
≤ E

[
sup

s∈[0,T ]

|Ys|p−1
(∫ T

0

|Zs|2ds
) 1

2
]

≤ p− 1

p
E
(

sup
s∈[0,T ]

|Ys|p
)

+
1

p
E
(∫ T

0

|Zs|2ds
) p

2

<∞,

and from (3.4),

E
(

[Φ]
1
2

T

)
≤ E

[
sup

s∈[0,T ]

|Ys|p−1
(∫ T

0

∫
U

|Vs(e)|2µ(ds, de)

) 1
2
]

≤ p− 1

p
E
(

sup
s∈[0,T ]

|Ys|p
)

+
1

p
E
(∫ T

0

∫
U

|Vs(e)|2µ(ds, de)

) p
2

≤ p− 1

p
E
(

sup
s∈[0,T ]

|Ys|p
)

+
1

p
E
[ ∫ τn

t∧τn

∫
U

|Vs(e)|pλ(de)ds

]
<∞.
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Thus taking expectation in (3.8) leads to that,

(
p(p− 1)

2
− ε2

2
)E
∫ T

t

|Ys|p−2|Zs|2ds(3.9)

+
p(p− 1)

2
E
∫ T

t

∫
U

|Ys|p−2|Vs(e)|2λ(de)ds

≤ E
[
|ξ|p + p

∫ T

t

|Ys|p−1f(s, 0, 0, 0)ds+ (pκ+
p2κ2

2ε2
)

∫ T

t

|Ys|pds

+
p− 1

p
(pκ)

p
p−1 ε−

p
p−1

∫ T

t

|Ys|p−1ds

+
εp

p

∫ T

t

∫
U

|Ys|p−2|Vs(e)|pλ(de)ds

]
.

Taking account of (3.9), (3.8) becomes

E sup
t
|Yt|p(3.10)

≤ E
[
|ξ|p + p

∫ T

t

|Ys|p−1f(s, 0, 0, 0)ds+ (pκ+
p2κ2

2ε2
)

∫ T

t

|Ys|pds

+
p− 1

p
(pκ)

p
p−1 ε−

p
p−1

∫ T

t

|Ys|p−1ds

+
εp

p

∫ T

t

∫
U

|Ys|p−2|Vs(e)|pλ(de)ds

]
+ pE

(
sup

s∈[0,T ]

∣∣∣∣ ∫ T

s

Ys|Ys|p−2ZsdBs
∣∣∣∣)

+ pE
(

sup
s∈[0,T ]

∣∣∣∣ ∫ T

s

∫
U

Ys− |Ys− |p−2Vs(e)µ̃(ds, de)

∣∣∣∣).
Using the BDG inequality and Young’s inequality (i.e., ab ≤ ap

p + bq

q , with
1
p + 1

q = 1) we get

pE
[

sup
s∈[0,T ]

∣∣∣∣ ∫ T

s

Ys|Ys|p−2ZsdBs
∣∣∣∣]

≤ CpE
[(∫ T

t

|Ys|2(p−1)|Zs|2ds
)1/2]

≤ CpE
[(

sup
s∈[0,T ]

|Ys|p/2
)(∫ T

t

|Ys|p−2|Zs|2ds
)1/2]

≤ Cp
2
E
[

sup
s∈[0,T ]

|Ys|p
]

+
1

2
E
[ ∫ T

t

|Ys|p−2|Zs|2ds
]
.



D-SOLUTIONS OF BSDES WITH POISSON JUMPS 1093

and,

pE
[

sup
s∈[0,T ]

∣∣∣∣ ∫ T

s

∫
U

Ys− |Ys− |p−2Vs(e)µ̃(ds, de)

∣∣∣∣]

≤ CpE
[(∫ T

t

∫
U

|Ys|p(p−2)|Vs(e)|pµ(ds, de)

)1/p]
≤ CpE

[(
sup

s∈[0,T ]

|Ys|
(p−2)(p−1)

p

)(∫ T

t

∫
U

|Ys|p−2|Vs(e)|pµ(ds, de)

)1/p]
≤ p− 1

p
CpE

[
sup

s∈[0,T ]

|Ys|p−2
]

+
Cp
p
E
[ ∫ T

t

∫
U

|Ys|p−2|Vs|pµ(ds, de)

]
.

Coming back to inequality (3.10) with the above estimates we deduce that

E sup
t
|Yt|p ≤ E

[
|ξ|p + p

∫ T

t

|Ys|p−1f(s, 0, 0, 0)ds+ (pκ+
p2κ2

2ε2
)

∫ T

t

|Ys|pds

+
p− 1

p
(pκ)

p
p−1 ε−

p
p−1

∫ T

t

|Ys|p−1ds
]
.

Applying once again Young’s inequality, we get

p

∫ T

t

|Ys|p−1|f(s, 0, 0, 0)|ds ≤ pCp
(

sup
s∈[0,T ]

|Ys|p−1
∫ T

t

|f(s, 0, 0, 0)|ds
)

≤ Cp
(

sup
s∈[0,T ]

|Ys|p
)

+
1

p

(∫ T

t

|f(s, 0, 0, 0)|ds
)p
,

where Cp changes from a line to another. Consequently,

E sup
t∈[0,T ]

|Yt|p ≤ C ′pE
[
|ξ|p +

(∫ T

t

|f(s, 0, 0, 0)|ds
)p]

+ C ′′p,κ

∫ T

t

E sup
u∈[s,T ]

|Yu|pds.

Finally, using Gronwall’s lemma, we obtain

E supt∈[0,T ] |Yt|p ≤ C ′peC
′′
p,κTE

[
|ξ|p +

(∫ T
0
|f(s, 0, 0, 0)|ds

)p]
.

The desired result follows from Lemma 3.1. �

3.2. Uniqueness

Lemma 3.3. Under assumptions (A1) and (A2) on (f, ξ), the associated BSDE
has at most one solution (Y,Z, V ) such that Y belongs to the class D, Z ∈
∪β>αMβ and V ∈ L1.
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Proof. Assume that (Y,Z, V ) and (Y ′, Z ′, V ′) are two solutions of (2.2). For
any n ≥ 0, let us define τn as follows:

τn = inf{t ≥ 0;

∫ t

0

(|Zs|2 + |Z ′s|2)ds+

∫ T

t

∫
U

(|Vs|2 + |V ′s |2)λ(de)ds > n} ∧ T.

We first show that there exists a constant p > 1 such that Y − Y ′ belongs
to Sp. Applying Itô-Tanaka’s formula on [t ∧ τn, τn] gives,

|Yt∧τn − Y ′t∧τn | = |Yτn − Y
′
τn |+

∫ τn

t∧τn
sgn(Ys− − Y ′s−)d(Ys − Y ′s ) + L0

t (Y − Y ′),

where the process (L0
t (Y − Y ′))t≤T is the local time of the semi martingale

(Ys − Y ′s )0≤s≤T at 0 which is a non-negative process (for more details one can

see Theorem 68 in [6, p. 213]) and sgn(Y − Y ′) := Y−Y ′
|Y−Y ′|1Y 6=Y ′ . Then we

have,

|Yt∧τn − Y ′t∧τn |(3.11)

≤ |Yτn−Y ′τn |+
∫ τn

t∧τn
sgn(Ys−−Y ′s−)

[
f(s, Ys, Zs, Vs)−f(s, Y ′s , Z

′
s, V

′
s )

]
ds

+

∫ τn

t∧τn
sgn(Ys− − Y ′s−)(Zs − Z ′s)dBs

−
∫ τn

t∧τn

∫
U

sgn(Ys− − Y ′s−)(Vs(e)− V ′s (e))µ̃(ds, de).

Thus, using the (iv) assumption on f , we get

sgn(Ys− − Y ′s−)

[
f(s, Ys, Zs, Vs)− f(s, Y ′s , Z

′
s, V

′
s )

]
= sgn(Ys− − Y ′s−)

[
f(s, Ys, Zs, Vs)− f(s, Ys, 0, 0)

+ f(s, Ys, 0, 0)− f(s, Y ′s , 0, 0) + f(s, Y ′s , 0, 0)− f(s, Y ′s , Z
′
s, V

′
s )

]
≤ Csgn(Ys− − Y ′s−)

(
gs + |Ys|+ |Y ′s |+ |Zs|+ |Z ′s|+ ‖Vs‖+ ‖V ′s‖

)α
.

Next taking conditional expectation in (3.11) with respect to Ft∧τn on
both hand-sides and taking into account that the two last terms are Ft∧τn -
martingales we obtain,∣∣∣∣Yt∧τn − Y ′t∧τn ∣∣∣∣ ≤ E

[
|Yτn − Y ′τn |+ C

∫ τn

t∧τn
sgn(Ys− − Y ′s−)(

gs + |Ys|+ |Y ′s |+ |Zs|+ |Z ′s|+ ‖Vs‖+ ‖V ′s‖
)α

ds|Ft∧τn
]
.
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Taking now the limit as n→∞ we get∣∣∣∣Yt − Y ′t ∣∣∣∣ ≤ CE
[ ∫ T

t

sgn(Ys− − Y ′s−)(
gs + |Ys|+ |Y ′s |+ |Zs|+ |Z ′s|+ ‖Vs‖+ ‖V ′s‖

)α
ds|Ft

]
.

For p > 1 such that pα < β, applying Doob’s inequality to have

E
[

sup
t≤T
|Yt − Y ′t |p

]
≤ CE

[ ∫ T

0

sgn(Ys− − Y ′s−)

(
gs+|Ys|+|Y ′s |+|Zs|+|Z ′s|+‖Vs‖+‖V ′s‖

)αp
ds

]
< ∞.

Hence |Y − Y ′| belongs to Sp for some p > 1.
Now let p > 1. By Itô-Tanaka formula on [t ∧ τn, τn] we have

|Yt∧τn − Y ′t∧τn |
p +

p(p− 1)

2

∫ τn

t∧τn
|Ys − Y ′s |p−2sgn(Ys− − Y ′s−)|Zs − Z ′s|2ds(3.12)

+
p(p− 1)

2

∫ τn

t∧τn

∫
U

|Ys − Y ′s |p−2sgn(Ys− − Y ′s−)(Vs(e)− V ′s (e))2µ(ds, de)

= |Yτn − Y ′τn |
p + p

∫ τn

t∧τn
sgn(Ys− − Y ′s−)|Ys − Y ′s |p−1[

f(s, Ys, Zs, Vs)− f(s, Y ′s , Z
′
s, V

′
s )

]
ds

− p
∫ τn

t∧τn
sgn(Ys− − Y ′s−)|Ys − Y ′s |p−1(Zs − Z ′s)dBs

− p
∫ τn

t∧τn

∫
U

sgn(Ys− − Y ′s−)|Ys − Y ′s |p−1(Vs(e)− V ′s (e))2µ̃(ds, de).

From the Lipschitz property of f , there exist bounded and Ft-adapted processes
(at)t∈[0,T ], (bt)t∈[0,T ] and (ct)t∈[0,T ] such that

f(s, Ys, Zs, Vs)− f(s, Y ′s , Z
′
s, V

′
s )

= as(Ys − Y ′s ) + bs(Zs − Z ′s) + cs

∫
U

(Vs(e)− V ′s (e))λ(de).

Therefore for any t ≤ T , the equality (3.12) becomes

|Yt∧τn − Y ′t∧τn |
p +

p(p− 1)

2

∫ τn

t∧τn
|Ys − Y ′s |p−2sgn(Ys− − Y ′s−)|Zs − Z ′s|2ds(3.13)

+
p(p− 1)

2

∫ τn

t∧τn

∫
U

|Ys − Y ′s |p−2sgn(Ys− − Y ′s−)(Vs(e)− V ′s (e))2µ(ds, de)

≤ |Yτn − Y ′τn |
p + pκ

∫ τn

t∧τn
sgn(Ys− − Y ′s−)|Ys − Y ′s |pds
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+ pκ

∫ τn

t∧τn
sgn(Ys− − Y ′s−)|Ys − Y ′s |p−1|Zs − Z ′s|ds

+ pκ

∫ τn

t∧τn

∫
U

sgn(Ys− − Y ′s−)|Ys − Y ′s |p−1(Vs(e)− V ′s (e))λ(de)ds

− p
∫ τn

t∧τn
sgn(Ys− − Y ′s−)|Ys − Y ′s |p−1(Zs − Z ′s)dBs

− p
∫ τn

t∧τn

∫
U

sgn(Ys− − Y ′s−)|Ys − Y ′s |p−1(Vs(e)− V ′s (e))2µ̃(ds, de).

Applying Young’s inequality (i.e., ab ≤ a2

2ε + εb2

2 with ε = p−1
2p )

pκ|Ys − Y ′s |p−1|Zs − Z ′s|

≤ pκ2

(p− 1)
|Ys − Y ′s |p +

p(p− 1)

4
|Ys − Y ′s |p−2|Zs − Z ′s|2,

and by ab ≤ ap

pεp + εqbq

q with 1
p + 1

q = 1 we have

pκ|Ys − Y ′s |p−1(Vs(e)− V ′s (e))

≤ (p− 1)κ
p

(p−1) pp−1ε−
p
p−1 |Ys − Y ′s |p−1 +

εp

p
|Ys − Y ′s |p−2(Vs(e)− V ′s (e))p.

Following the same arguments as in the proof of Proposition 3.2 and going
back to (3.13) to obtain

|Yt∧τn − Y ′t∧τn |
p

≤ |Yτn − Y ′τn |
p + (pκ+

pκ2

(p− 1)
)

∫ τn

t∧τn
sgn(Ys− − Y ′s−)|Ys − Y ′s |pds

+ (p− 1)κ
p

(p−1) pp−1ε−
p
p−1

∫ τn

t∧τn
sgn(Ys− − Y ′s−)|Ys − Y ′s |p−1ds

− p
∫ τn

t∧τn
sgn(Ys− − Y ′s−)|Ys − Y ′s |p−1(Zs − Z ′s)dBs

− p
∫ τn

t∧τn

∫
U

sgn(Ys− − Y ′s−)|Ys − Y ′s |p−1(Vs(e)− V ′s (e))2µ̃(ds, de).

Finally taking expectation and since the two latter terms are martingales
due to Lemma 2.1, we have

E
[
|Yt∧τn−Y ′t∧τn |

p

]
≤ E

[
|Yτn−Y ′τn |

p+Cp,κ

∫ τn

t∧τn
sgn(Ys− − Y ′s−)|Ys − Y ′s |pds

]
.

As for some p > 1, |Y − Y ′| ∈ Sp then taking the limit with respect to n to
get

E
[
|Yt − Y ′t |p

]
≤ Cp,κE

[ ∫ T

t

sgn(Ys− − Y ′s−)|Ys − Y ′s |pds
]
.
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From Gronwall’s lemma we conclude that E[|Yt − Y ′t |p] = 0, ∀t ≤ T . Then
Yt = Y ′t for all t ≤ T .

Since there exist β > α and β′ > α such that Z ∈ Mβ and Z ′ ∈ Mβ′ ,
then Z and Z ′ belong to Mβ∨β′ . We have also that V = V ′. Consequently
(Y,Z, V ) = (Y ′, Z ′, V ′). We conclude that the BSDE (2.2) has at most one
solution (Y,Z, V ) such that Y belongs to the class D, Z ∈ ∪β>αMβ and
V ∈ L1. �

3.3. Existence of a D-solution

We will need the following assumption on the data, for some p > 1,

(A3) E[|ξ|p + (

∫ T

0

|f(s, 0, 0, 0)|ds)p] < +∞.

Let us recall the following result. A proof can be found in [9, Lemma 2.4].

Theorem 3.4. For p = 2, under assumptions (A2)(ii) and (A3) on the data
(ξ, f) then there exists a unique triple (Y,Z, V ) ∈ S2×M2×L2(µ̃) which solves
the following BSDE

Yt = ξ+

∫ T

t

f(s, Ys, Zs, Vs)ds−
∫ T

t

ZsdBs−
∫ T

t

∫
U

Vs(e)µ̃(ds, de), 0 ≤ t ≤ T.

For a given p ∈ (1, 2), ([10, Theorem 4.1]) the author proved the following
result.

Theorem 3.5. For p ∈ (1, 2), under assumptions (A2)(ii) and (A3) on the
data (ξ, f) then the BSDE with jumps admits a unique solution (Y, Z, V ) ∈
Sp ×Mp × Lp.

Yt = ξ+

∫ T

t

f(s, Ys, Zs, Vs)ds−
∫ T

t

ZsdBs−
∫ T

t

∫
U

Vs(e)µ̃(ds, de), 0 ≤ t ≤ T.

We now prove our main existence result for p = 1.

Theorem 3.6. Let assumptions (A1) and (A2) on (f, ξ) hold. Then the asso-
ciated BSDE (2.2) has a solution (Y, Z, V ) such that Y belongs to class D and,
for each β ∈ (0, 1), (Z, V ) ∈Mβ × L1.

Before giving the proof of this result, we study the case where the generator
is independent of the variables z and v.

Proposition 3.7. Let assumptions (A1) and (A2) on (f, ξ) hold and let us
suppose that f does not depend on z and v. Then the associated BSDE (2.2)
has a solution (Y,Z, V ) such that Y belongs to class D and, for each β ∈ (0, 1),
(Z, V ) ∈Mβ × L1.

Proof. Let us set for each integer n ≥ 1, ξn = qn(ξ) and fn(t, y) = f(t, y) −
f(t, 0) + qn(f(t, 0)) as in the proof of Theorem 3.5. It follows from this result
that the BSDE associated to the couple (ξn, fn) has a unique solution in S2 ×
M2 × L2.



1098 I. HASSAIRI

Using Itô-Tanaka formula as in the proof of the uniqueness result we have

|Y n+it − Y nt | ≤ |ξn+i − ξn|+
∫ T

t

(fn+i(s, Y
n+i
s )− fn(s, Y ns ))ds

+

∫ T

t

(Zn+is − Zns )dBs −
∫ T

t

∫
U

(V n+is (e)− V ns (e))µ̃(ds, de).

Now taking conditional expectation with respect to Ft on both hand-sides
and taking into account that the two last terms are Ft- martingales we obtain

|Y n+it − Y nt | ≤ E[|ξn+i − ξn|+
∫ T
t
|fn+i(s, Y n+is )− fn(s, Y ns )|ds|Ft].

We deduce that

|Y n+it − Y nt | ≤ E[|ξ|1ξ>n +
∫ T
t
|f(s, 0)|1f(s,0)>nds|Ft].

Therefore

‖Y n+i − Y n‖D ≤ E[|ξ|1ξ>n +
∫ T
t
|f(s, 0)|1f(s,0)>nds].

So (Y n) is a Cauchy sequence for the norm ‖·‖D converges to the progressive
measurable process limit Y which belongs to the class D.

Let (Y n+i − Y n, Zn+i − Zn, V n+i − V n) be the solution of the following
BSDE:

Y n+it − Y nt = ξn+i − ξn +

∫ T

t

(fn+i(s, Y
n+i
s )− fn(s, Y ns ))ds

−
∫ t

t

(Zn+is − Zns )dBs −
∫ T

t

∫
U

(V n+is (e)− V ns (e))µ̃(ds, de).

The random function fn+i(s, Y
n+i
s )− fn(s, Y ns ) verifies the Lipschitz prop-

erty as f then by Lemma 3.1 we deduce that for β ∈ (0, 1),

E[(

∫ T

0

(|Zn+is − Zns |2 + ‖V n+is − V ns ‖2)ds)
β
2 ]

≤ Cβ,κE[sup
t
|Y n+it − Y nt |β + (

∫ T

0

|f(s, 0)|1f(s,0)>nds)β ].

Hence both (Zn) and (V n) are Cauchy sequences, for each β ∈ (0, 1), in the
spaces Mβ and L which converge to measurable processes Z and V .

So we get that (Y n, Zn, V n) solution of the following BSDE

Y nt = ξn +

∫ T

t

fn(s, Y ns )ds−
∫ T

t

Zns dBs −
∫ T

t

∫
U

V ns (e)µ̃(ds, de), t ≤ T.

Since
∫ t
0
Zns dBs converges to

∫ t
0
ZsdBs, also

∫ t
0

∫
U
V ns (e)µ̃(ds, de) converges

to
∫ t
0

∫
U
Vs(e)µ̃(ds, de) and since the map y 7→ f(t, y) is continuous, by taking
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the limit we check easily that the limit (Y,Z, V ) solves the following desired
BSDE

Yt = ξ +

∫ T

t

f(s, Ys)ds−
∫ T

t

ZsdBs −
∫ T

t

∫
U

Vs(e)µ̃(ds, de).
�

Now we can prove our main existence result.

Proof of Theorem 3.6. We will finally complete the proof of the existence part.
To this end, we consider a Picard’s iteration. Let us set (Y 0, Z0, V 0) = (0, 0, 0)
and define recursively, for each n ≥ 0,

Y n+1
t = ξ +

∫ T

t

f(s, Y n+1
s , Zns , V

n
s )ds−

∫ T

t

Zn+1
s dBs

−
∫ T

t

∫
U

V n+1
s (e)µ̃(ds, de), 0 ≤ t ≤ T.

For n ≥ 1, following the same arguments as in the proof of uniqueness, we
obtain that

|Y n+1
t − Y nt | ≤ CE

[ ∫ T

t

sgn(Y ns− − Y
n−1
s− )(gs + |Y ns |+ |Y n−1s |

+ |Zns |+ |Zn−1s |+ ‖V ns ‖+ ‖V n−1s ‖)αds|Ft
]
.

Zn and Zn−1 belong to Mβ for each β ∈ (0, 1], Y n and Y n−1 belong to class
D, V n and V n−1 belong to L and (gt)t∈[0,T ] is integrable. Hence the quantity∫ T

t

sgn(Y ns− −Y
n−1
s− )(gs+ |Y ns |+ |Y n−1s |+ |Zns |+ |Zn−1s |+‖V ns ‖+‖V n−1s ‖)αds

belongs to the space Lq such that αq < 1. Let us fix q ∈ (1, 2) such that αp < 1.
Then for all n ≥ 1, yn = Y n+1−Y n belongs to Sq. Let us set zn = Zn+1−Zn
and vn = V n+1 − V n. The triple (yn, zn, vn) is a solution of the following
BSDE

ynt =

∫ T

t

fn(s, yns )ds−
∫ T

t

zns dBs −
∫ T

t

∫
U

vns (e)µ̃(ds, de), t ≤ T,

where the generator fn(s, yns ) = f(s, Y n+1, Zns , V
n
s ) − f(s, Y ns , Z

n−1
s , V n−1s ).

Since f assumed to satisfy (A2), fn verifies it too.
From Lemma 3.1 we have that zn belongs to Mq since yn is in Sq and by

Proposition 3.2 we obtain that there exists a constant Cq,κ such that

E
[

sup
t
|ynt |q + (

∫ T

0

(|zns |2 + ‖vns ‖2)ds)
q
2

]
≤ Cq,κE

[
(

∫ T

0

|f(s, Y ns , Z
n
s , V

n
s )− f(s, Y ns , Z

n−1
s , V n−1s )|ds)q

]
.
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For n ≥ 2, by the Lipschitz property on f , we get

E
[

sup
t
|ynt |q+(

∫ T

0

(|zns |2 + ‖vns ‖2)ds)
q
2

]
≤ κ Cq,κE

[
(

∫ T

0

|zn−1s |+ ‖vn−1s ‖ds)q
]
,

applying Hölder’s inequality, we obtain

E
[

sup
t
|ynt |q + (

∫ T

0

(|zns |2 + ‖vns ‖2)ds)
q
2

]
≤ κ Cq,κT

1− q2E
[
(

∫ T

0

(|zn−1s |+ ‖vn−1s ‖)2ds)
q
2

]
.

Hence for n ≥ 2, we have

E
[

sup
t
|ynt |q + (

∫ T

0

(|zns |2 + ‖vns ‖2)ds)
q
2

]
≤ (κ Cq,κT

1− q2 )n−1E
[

sup
t
|y1t |q + (

∫ T

0

(|z1s |2 + ‖v1s‖2)ds)
q
2

]
.

Let us first assume, for a sufficiently small T , that κ Cq,κT
1− q2 < 1. Then

the term of the right-hand side of the last inequality is finite, we deduce that
(Y n−Y 1, Zn−Z1, V n−V 1) converges to (U, V,W ) in the space Sq ×Mq ×L
therefore the quantity {E[supt |y1t |q + (

∫ T
0

(|z1s |2 + ‖v1s‖2)ds)
q
2 ]} is finite.

Therefore (Y n, Zn, V n) converges to (Y = U+Y 1, Z = V +Z1, V = W+V 1)
in the space Sβ ×Mβ × L for each β ∈ (0, 1] since (Y 1, Z1, V 1) belongs to it.
Also we deduce that Y n converges to Y for the norm ‖ · ‖D since Y 1 belongs to
class D and the convergence in Sq with q > 1 is stronger than the convergence
in ‖ · ‖D-norm.

We conclude, by taking the limit in the following equation satisfied by
(Y n, Zn, V n) as follows:

Y nt = ξ+

∫ T

t

f(s, Y ns , Z
n−1
s , V n−1s )ds−

∫ T

t

Zns dBs−
∫ T

t

∫
U

V ns (e)µ̃(ds, de),

that the triple (Y,Z, V ) which belongs to the space D × Mβ × L for each
β ∈ (0, 1] solves our desired BSDE,

Yt = ξ+

∫ T

t

f(s, Ys, Zs, Vs)ds−
∫ T

t

ZsdBs−
∫ T

t

∫
U

Vs(e)µ̃(ds, de), 0 ≤ t ≤ T.

For the general case, it suffices to subdivide the interval time [0, T ] into a finite
number of small intervals, and using standard arguments, we can show the
existence of a solution (Y, Z, V ) of BSDE (2.2) on the whole interval [0, T ]. �
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