J. Korean Math. Soc. ${\bf 59}$ (2022), No. 6, pp. 1139–1151 https://doi.org/10.4134/JKMS.j210669 pISSN: 0304-9914 / eISSN: 2234-3008

DIRICHLET EIGENVALUE PROBLEMS UNDER MUSIELAK-ORLICZ GROWTH

Allami Benyaiche and Ismail Khlifi

ABSTRACT. This paper studies the eigenvalues of the $G(\cdot)\text{-Laplacian}$ Dirichlet problem

$$\begin{cases} -\operatorname{div}\left(\frac{g(x,|\nabla u|)}{|\nabla u|}\nabla u\right) = \lambda\left(\frac{g(x,|u|)}{|u|}u\right) & \text{ in }\Omega,\\ u = 0 & \text{ on }\partial\Omega, \end{cases}$$

where Ω is a bounded domain in \mathbb{R}^N and g is the density of a generalized Φ -function $G(\cdot)$. Using the Lusternik-Schnirelmann principle, we show the existence of a nondecreasing sequence of nonnegative eigenvalues.

1. Introduction

In the fields of partial differential equations and the calculus of variations, there has been much research on non-standard growth problems, such as the eigenvalue problems [5]. The study of eigenvalue problems relies on the Lusternik-Schnirelmann (L-S) theory of critical points for an even functional on a manifold. The presentations of this theory, in both finite and infinitedimensional spaces, can be found in [1, 4, 14, 15].

A mathematical prototype for nonlinear elliptic eigenvalue problems is expressible by involving the p-Laplacian operator

(1.1)
$$\begin{cases} -\operatorname{div}\left(|\nabla u|^{p-2}\nabla u\right) = \lambda\left(|u|^{p-2}u\right) & \text{in }\Omega, \\ u = 0 & \text{on }\partial\Omega, \end{cases}$$

where $1 and <math>\Omega$ is a bounded domain of \mathbb{R}^N . The problem (1.1) has attracted much attention and has been extensively studied in the literature (see for examples [2,7,9]). One of the important consequences of the Lusternik-Schnirelmann principle is the existence, exactly as for the classical Laplace

©2022 Korean Mathematical Society

Received November 5, 2021; Revised June 29, 2022; Accepted August 30, 2022.

²⁰²⁰ Mathematics Subject Classification. Primary 35P30, 47J10, 49R05.

Key words and phrases. Dirichlet eigenvalue problems, Lusternik-Schnirelmann principle, $G(\cdot)$ -Laplacian, Musielak-Orlicz growth, generalized Φ -function, generalized Orlicz-Sobolev space.

operator (p = 2), of an increasing sequence of eigenvalues

$$\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_i \leq \cdots, \quad \lambda_i \to \infty.$$

Later on, this result has been generalized to variable exponent and Orlicz cases

$$\begin{pmatrix} -\operatorname{div}\left(|\nabla u|^{p(x)-2}\nabla u\right) = \lambda\left(|u|^{p(x)-2}u\right) & \text{in }\Omega,\\ u = 0 & \text{on }\partial\Omega \end{cases}$$

and

$$\begin{cases} -\operatorname{div}\left(\frac{g(|\nabla u|)}{|\nabla u|}\nabla u\right) = \lambda \left(\frac{g(|u|)}{|u|}u\right) & \text{in }\Omega, \\ u = 0 & \text{on }\partial\Omega \end{cases}$$

where $x \to p(x)$ is a continuous function on $\overline{\Omega}$ such that $1 < p(x) < \infty$ and $t \to g(t)$ is the density of a Φ -function G (see [6,12,13]).

One naturally asks whether a similar result holds in the Musielak-Orlicz case. For this, we consider the following eigenvalue problem under generalized Orlicz growth

(1.2)
$$\begin{cases} -\operatorname{div}\left(\frac{g(x,|\nabla u|)}{|\nabla u|}\nabla u\right) = \lambda\left(\frac{g(x,|u|)}{|u|}u\right) & \text{in }\Omega,\\ u = 0 & \text{on }\partial\Omega, \end{cases}$$

where $g(x, \cdot)$ is the right-hand derivative of a Φ -function $G(x, \cdot)$. This situation covers not only the variable exponent $G(x,t) = t^{p(x)}$ and Orlicz case G(x,t) =G(t), but also the variable exponent perturbation $G(x,t) = t^{p(x)} \ln(e+t)$, the double phase $G(x,t) = t^p + a(x)t^q$ and their various combinations (see [8]). Note that, some particular vector inequalities are helpful in the study of the eigenvalue problem for the *p*-Laplacian. In our situation, a lack of these inequalities and homogeneity are a major source of difficulties. To overcome these problems, we developed a method inspired by Lieberman's pioneering article [10], which allows us to apply the L-S principle for establish the existence of a nondecreasing sequence of nonnegative eigenvalue tending to infinity of the problem (1.2) (see Theorem 3.7).

2. Musielak-Orlicz-Sobolev spaces

To deal with the problem (1.2), we need Musielak-Orlicz-Sobolev spaces. Most of the results concerning these spaces are given in Musielak's monograph [11], hence the alternative name of Musielak-Orlicz spaces.

Definition 2.1. A function $G : \Omega \times [0, \infty) \longrightarrow [0, \infty]$ is called a generalized Φ -function, denoted by $G(\cdot) \in \Phi(\Omega)$, if the following conditions hold:

- For each $t \in [0, \infty)$, the function $G(\cdot, t)$ is measurable.
- For a.e. $x \in \Omega$, the function $G(x, \cdot)$ is a Φ -function, i.e., (1) $G(x, 0) = \lim_{t \to 0^+} G(x, t) = 0$ and $\lim_{t \to \infty} G(x, t) = \infty$;
 - (2) $G(x, \cdot)$ is increasing and convex.

Note that, a generalized Φ -function can be represented as

$$G(x,t) = \int_0^t g(x,s) \,\mathrm{d}s,$$

where $g(x, \cdot)$ is the right-hand derivative of $G(x, \cdot)$. Furthermore for each $x \in \Omega$, the function $g(x, \cdot)$ is right-continuous and nondecreasing.

Assumptions. We say that $G(\cdot)$ satisfies

(SC): If for a.e. $x \in \Omega$, the function $t \to g(x,t)$ is a $C^1(\mathbb{R}^+)$ and there exist two constants $g_0, g^0 > 0$ such that,

$$g_0 \le \frac{tg'(x,t)}{g(x,t)} \le g^0.$$

 (A_0) : If there exists a constant $c_0 > 1$ such that,

$$\frac{1}{c_0} \le G(x, 1) \le c_0 \text{ for a.e. } x \in \Omega.$$

 $(A_1):$ If there exists C>0 such that, for every $x,y\in B_R\subset \Omega$ with $R\leq 1,$ we have

$$G_{B_R}(x,t) \le CG_{B_R}(y,t)$$
 when $G_{B_R}^-(t) \in \left\lfloor 1, \frac{1}{R^N} \right\rfloor$,

where $G_{B_R}^-(t) := \inf_{B_R} G(x, t)$.

Remark 2.2. 1) Note that (A_1) corresponds to local log-Holder continuity in the variable exponent case (see Proposition 7.1.2 in [8]). In the double phase case $G(x,t) = t^P + a(x)t^q$, condition (A_1) is equivalent to $a(y) - a(x) \leq C|y-x|^{\frac{N}{p}(q-p)}$ (see Proposition 7.2.2 in [8]).

2) The condition (SC) implies

$$g_0 + 1 \le \frac{tg(x,t)}{G(x,t)} \le g^0 + 1.$$

So, we have the following inequalities [3]

(2.1)
$$\sigma^{g_0+1}G(x,t) \le G(x,\sigma t) \le \sigma^{g^0+1}G(x,t) \text{ for } x \in \Omega, \ t \ge 0 \text{ and } \sigma \ge 1.$$

(2.2)
$$\sigma^{g^0+1}G(x,t) \le G(x,\sigma t) \le \sigma^{g_0+1}G(x,t) \text{ for } x \in \Omega, \ t \ge 0 \text{ and } \sigma \le 1.$$

Definition 2.3. We define $G^*(\cdot)$ the conjugate Φ -function of $G(\cdot)$, by

$$G^*(x,s) := \sup_{t>0} (st - G(x,t)) \text{ for } x \in \Omega \text{ and } s \ge 0.$$

Note that $G^*(\cdot)$ is also a generalized Φ -function and can be represented as

$$G^*(x,t) = \int_0^t g^{-1}(x,s) \,\mathrm{d}s,$$

with $g^{-1}(x,s) := \sup\{t \ge 0 : g(x,t) \le s\}.$

Remark 2.4. If $G(\cdot)$ satisfies (SC), then $G^*(\cdot)$ satisfies also (SC), as follows

(2.3)
$$\frac{g^0 + 1}{g^0} \le \frac{tg^{-1}(x,t)}{G^*(x,t)} \le \frac{g_0 + 1}{g_0}$$

The functions $G(\cdot)$ and $G^*(\cdot)$ satisfies the following Young inequality

$$st \leq G(x,t) + G^*(x,s)$$
 for $x \in \Omega$ and $s,t \geq 0$.

Further, we have the equality if s = g(x, t) or $t = g^{-1}(x, s)$.

Definition 2.5. Let $G(\cdot) \in \Phi(\mathbb{R}^N)$, the generalized Orlicz space, also called Musielak-Orlicz space, is defined as the set

$$L^{G(\cdot)}(\Omega) := \{ u \in L^0(\Omega) : \lim_{\lambda \to 0} \int_{\Omega} G(x, \lambda |u|) \, \mathrm{d}x = 0 \},\$$

where $L^0(\Omega)$ is the set of measurable functions in Ω . If $G(\cdot)$ satisfies (SC), then

$$L^{G(\cdot)}(\Omega) = \{ u \in L^0(\Omega) : \int_{\Omega} G(x, |u|) \, \mathrm{d}x < \infty \}.$$

Remark 2.6. On the generalized Orlicz space, we define the following norms:

- Luxembourg norm: $||u||_{G(\cdot)} = \inf\{\lambda > 0 : \int_{\Omega} G(x, \frac{|u|}{\lambda}) \, \mathrm{d}x \le 1\}.$
- Orlicz norm: $||u||^0_{G(\cdot)} = \sup\{|\int_{\Omega} u(x)v(x) \, \mathrm{d}x| : \int_{\Omega} G^*(x, |v|) \, \mathrm{d}x \le 1\}.$

These norms are equivalent, precisely, we have

 $||u||_{G(\cdot)} \le ||u||_{G(\cdot)}^0 \le 2||u||_{G(\cdot)}.$

The functions $G(\cdot)$ and $G^*(\cdot)$ satisfy the Hölder inequality

$$\left| \int_{\Omega} u(x)v(x) \,\mathrm{d}x \right| \le 2||u||_{G(\cdot)}||v||_{G^*(\cdot)} \text{ for } u \in L^{G(\cdot)}(\Omega) \text{ and } v \in L^{G^*(\cdot)}(\Omega).$$

The following lemmas establish properties of convergent sequences in generalized Orlicz spaces (see [8]).

Lemma 2.7. Let $G(\cdot) \in \Phi(\Omega)$. For any sequence $\{u_i\}_i$ in $L^{G(\cdot)}(\Omega)$, we have the following properties: If $G(\cdot)$ satisfies (SC), then

$$||u_i||_{G(\cdot)} \to 0 \ (resp.\ 1;\infty) \Longleftrightarrow \int_{\Omega} G(x,|u_i(x)|) \,\mathrm{d}x \to 0 \ (resp.\ 1;\infty).$$

Lemma 2.8. Let $G(\cdot) \in \Phi(\Omega)$ and $\{u_i\}_i$ be a sequence of measurable functions u_i . Assume the sequence $\{u_i\}_i$ converges almost everywhere to a measurable function u, and is dominated by a function $h \in L^{G(\cdot)}(\Omega)$. Then all u_i as well as u are in $L^{G(\cdot)}(\Omega)$ and the sequence $\{u_i\}_i$ converges to u in $L^{G(\cdot)}(\Omega)$.

Lemma 2.9. Let $G(\cdot) \in \Phi(\Omega)$ satisfies (SC) and $\{u_i\}_i$ be a sequence in $L^{G(\cdot)}(\Omega)$. If $u_i \to u$ in $L^{G(\cdot)}(\Omega)$, then there exist a subsequence $\{u_{i_j}\}_j$ and a function $h \in L^{G(\cdot)}(\Omega)$ such that to $u_{i_j} \to u$, for a.e. in Ω and for all j, $|u_{i_j}(x)| \leq h(x)$ for a.e. in Ω .

Proof. Since $u_i \to u$ in $L^{G(\cdot)}(\Omega)$, then by Lemma 2.7, we have

$$\int_{\Omega} G(x, |u_i(x) - u(x)|) \, \mathrm{d}x \to 0.$$

So, for any $\delta > 0$, let $A_{\delta,i} := \{x \in \Omega : |u_i(x) - u(x)| > \delta\}$. Using the inequalities (2.1), (2.2) and the condition (A_0) , we get

$$\begin{aligned} \frac{1}{c_0} \min(\delta^{g_0}, \delta^{g^0}) |A_{\delta,i}| &\leq \int_{A_{\delta,i}} G(x, \delta) \, \mathrm{d}x \\ &\leq \int_{A_{\delta,i}} G(x, |u_i - u|) \, \mathrm{d}x \\ &\leq \int_{\Omega} G(x, |u_i - u|) \, \mathrm{d}x. \end{aligned}$$

Hence, $|A_{\delta,i}| \to 0$, and $u_i \to u$ in measure. Therefore, there exists a subsequence (u_{i_i}) of (u_i) which converge to u, for a.e. in Ω .

Then we can define

$$h := \sum_{j=1}^{\infty} |u_{i_j} - u|$$

and it can be seen that $h \in L^{G(\cdot)}(\Omega)$ and h is a dominating function of (u_{i_j}) for all j.

Definition 2.10. We define the generalized Orlicz-Sobolev space by

 $W^{1,G(\cdot)}(\Omega) := \{ u \in L^{G(\cdot)}(\Omega) \cap L^1_{\text{loc}}(\Omega) : |\nabla u| \in L^{G(\cdot)}(\Omega) \text{ in the distribution sense} \},$

equipped with the norm

$$||u||_{1,G(\cdot)} = ||u||_{G(\cdot)} + ||\nabla u||_{G(\cdot)}$$

Definition 2.11. $W_0^{1,G(\cdot)}(\Omega)$ is the closure of $C_0^{\infty}(\Omega)$ in $W^{1,G(\cdot)}(\Omega)$.

Next, we recall the norm version of the Poincare inequality, which will be investigated in this work (see [8]).

Theorem 2.12. Let Ω be a bounded set of \mathbb{R}^N and $G(\cdot) \in \Phi(\Omega)$ satisfy (SC), (A_0) and (A_1) . For every $u \in W_0^{1,G(\cdot)}(\Omega)$, we have

$$||u||_{G(\cdot)} \le C||\nabla u||_{G(\cdot)}.$$

In particular, $||\nabla u||_{G(\cdot)}$ is a norm on $W_0^{1,G(\cdot)}(\Omega)$ and it is equivalent to the norm $||u||_{1,G(\cdot)}$.

The following compact embedding theorem for Musielak-Sobolev spaces is given by P. Hasto [8].

Theorem 2.13. Let $G(\cdot) \in \Phi(\mathbb{R}^N)$ satisfy (SC), (A_0) and (A_1) and let Ω be bounded. Then

$$W_0^{1,G(\cdot)}(\Omega) \hookrightarrow L^{G(\cdot)}(\Omega).$$

3. Eigenvalue problems for the $G(\cdot)$ -Laplacian

3.1. Lusternik-Schnirelmann principle (L-S principle)

We recall here a version of the Lusternik-Schnirelmann principle, which Browder discussed in [4] and Zeidler in [14, 15].

Theorem 3.1. Let X be a real reflexive Banach space. If A, B are two functionals on X satisfying the following properties:

 $(LS_1): A, B: X \to \mathbb{R}$ are even functionals and that $A, B \in C^1(X, \mathbb{R})$ with A(0) = B(0) = 0.

 (LS_2) : A' is strongly continuous (i.e., $u_i \rightharpoonup u$ in X implies $A'(u_i) \rightarrow A'(u)$) and,

$$\langle A'(u), u \rangle = 0, \ u \in \overline{coS_B} \ implies \ A(u) = 0,$$

 $A(u) = 0, \ u \in \overline{coS_B} \ implies \ u = 0,$

$$(u) = 0, \ u \in coS_B \ implies \ u = 0,$$

where $\overline{coS_B}$ is the closed convex hull of $S_B := \{u \in X, B(u) = 1\}$.

 (LS_3) : B' is continuous, bounded and satisfies (S_0) , i.e., as $i \to \infty$,

$$u_i \rightharpoonup u, \ B'(u_i) \rightharpoonup v, \ \langle B'(u_i), u_i \rangle \rightarrow \langle v, u \rangle \quad implies \quad u_i \rightarrow u.$$

 (LS_4) : The level set S_B is bounded and $u \neq 0$ implies

$$\langle B'(u), u \rangle > 0, \quad \lim_{t \to \infty} B(tu) = \infty, \quad \inf_{u \in S_B} \langle B'(u), u \rangle > 0.$$

Then the eigenvalue problem

(3.1)
$$A'(u) = \mu B'(u), \quad u \in S_B, \ \mu \in \mathbb{R},$$

admits a sequence of eigenpairs $\{u_i, \mu_i\}$ such that $u_i \rightharpoonup u, \mu \rightarrow 0$ as $i \rightarrow \infty$ and $\mu_i \neq 0$ for all *i*.

3.2. Application of L-S principle in $W_0^{1,G(\cdot)}(\Omega)$

In the sequel, let $G(\cdot) \in \Phi(\mathbb{R}^N)$ satisfy $(SC), (A_0), (A_1), G(x, \cdot) \in C^1([0, \infty))$ for every $x \in \Omega$ and C a generic constant which may change from line to line. We consider the following eigenvalue problem

(3.2)
$$\begin{cases} -\operatorname{div}\left(\frac{g(x,|\nabla u|)}{|\nabla u|}\nabla u\right) = \lambda\left(\frac{g(x,|u|)}{|u|}u\right) & \text{in }\Omega, \\ u = 0 & \text{on }\partial\Omega \end{cases}$$

where $g(x, \cdot)$ is the derivative of $G(x, \cdot)$. The existence of a weak solution to the Dirichlet-Sobolev problem associated of (3.2) has been studied in [3].

Definition 3.2. Let $\lambda \in \mathbb{R}$ and $u \in W_0^{1,G(\cdot)}(\Omega)$. (u, λ) is called a solution of the problem (3.2) if

(3.3)
$$\int_{\Omega} \frac{g(x, |\nabla u|)}{|\nabla u|} \nabla u \cdot \nabla v \, \mathrm{d}x = \lambda \int_{\Omega} \frac{g(x, |u|)}{|u|} uv \, \mathrm{d}x, \quad \forall v \in W_0^{1, G(\cdot)}(\Omega).$$

If (u, λ) is a solution of the problem (3.2) and $u \neq 0$, as usual, we call λ and uan eigenvalue and an eigenfunction corresponding to λ of (3.2), respectively.

In what follows we use the previous version of the L-S principle in order to prove the existence of a sequence of eigenvalues for problem (3.2). For this reason, we define on $X = W_0^{1,G(\cdot)}(\Omega)$ the functionals

(3.4)
$$A(u) := \int_{\Omega} G(x, |u|) \,\mathrm{d}x,$$

(3.5)
$$B(u) := \int_{\Omega} G(x, |\nabla u|) \, \mathrm{d}x.$$

Lemma 3.3. Let A and B be defined in (3.4), (3.5). Then A and B satisfies (LS_1) .

Proof. Let $G(\cdot) \in \Phi(\mathbb{R}^N)$. By definition of a generalized Φ -function, we have G(x,0) = 0 which implies A(0) = B(0) = 0. The C^1 -smooth regularity of the functionals A and B follows by computing the Gateaux derivatives of A and B at $u \in W_0^{1,G(\cdot)}(\Omega)$ in the direction $v \in W_0^{1,G(\cdot)}(\Omega)$. Precisely, for every $u, v \in W_0^{1,G(\cdot)}(\Omega)$, we have

(3.6)
$$\langle A'(u), v \rangle = \int_{\Omega} \frac{g(x, |u|)}{|u|} uv \, \mathrm{d}x,$$

(3.7)
$$\langle B'(u), v \rangle = \int_{\Omega} \frac{g(x, |\nabla u|)}{|\nabla u|} \nabla u \cdot \nabla v \, \mathrm{d}x$$

Then A and B satisfies (LS_1) .

Lemma 3.4. Let A be defined in (3.4). Then A' satisfies (LS_2) .

Proof. Let $u \in W_0^{1,G(\cdot)}(\Omega)$, by the condition (SC), we have $A(u) = \int C(x |u|) dx \leq -\frac{1}{2} \int g(x |u|) |u| dx \leq 1$

$$A(u) = \int_{\Omega} G(x, |u|) \, \mathrm{d}x \le \frac{1}{g_0 + 1} \int_{\Omega} g(x, |u|) |u| \, \mathrm{d}x \le \langle A'(u), u \rangle.$$

Then, if $\langle A'(u), u \rangle = 0$ implies A(u) = 0.

Next, we assume A(u) = 0. By Proposition 2.2.7 in [8], there exists $\tilde{G}(\cdot) \in \Phi(\Omega)$ with $\tilde{G}(\cdot) \approx G(\cdot)$ which is a strictly increasing. So, we have

$$0 \le \int_{\Omega} \tilde{G}(x, |u|) \, \mathrm{d}x \le C \int_{\Omega} G(x, |u|) \, \mathrm{d}x = 0 \quad \text{implies} \quad u = 0.$$

To end the proof of Lemma 3.4, it remains for us to prove that A' is strongly continuous. Let $u_i \rightharpoonup u$ in $W_0^{1,G(\cdot)}(\Omega)$, we need to show that

$$A'(u_i) \longrightarrow A(u)$$
 in $W_0^{1,G(\cdot)}(\Omega)^*$.

For every $v \in W_0^{1,G(\cdot)}(\Omega)$, using the Holder inequality, we get

(3.8)
$$\left| \int_{\Omega} \frac{g(x, |u_i|)}{|u_i|} u_i v \, dx - \int_{\Omega} \frac{g(x, |u|)}{|u|} u v \, dx \right| \\ \leq \int_{\Omega} \left| \frac{g(x, |u_i|)}{|u_i|} u_i - \frac{g(x, |u|)}{|u|} u \right| |v| \, dx$$

A. BENYAICHE AND I. KHLIFI

$$\leq 2 \left\| \left| \frac{g(x, |u_i|)}{|u_i|} u_i - \frac{g(x, |u|)}{|u|} u \right| \right\|_{G^*(\cdot)} ||v||_{G(\cdot)}.$$

Since $u_i \to u$ in $W_0^{1,G(\cdot)}(\Omega)$, then by the compact embedding Theorem 2.13, we have $u_i \to u$ in $L^{G(\cdot)}(\Omega)$. So, using the reverse dominate convergence theorem, Lemma 2.9, there are a subsequence $\{u_{i_j}\}_j$ and a function $h \in L^{G(\cdot)}(\Omega)$ such that $u_{i_j} \to u$ for a.e. in Ω and $|u_{i_j}| \leq h$.

As the function $t \to g(x,t)$ is continuous and increasing, we have

$$\frac{g(x,|u_{i_j}|)}{|u_{i_j}|}u_{i_j} \longrightarrow \frac{g(x,|u|)}{|u|}u \text{ for a.e. in } \Omega \text{ and } \frac{g(x,|u_{i_j}|)}{|u_{i_j}|}u_{i_j} \le \frac{g(x,|h|)}{|h|}h.$$

Note that $\frac{g(x,|h|)}{|h|}h \in L^{G^*(\cdot)}(\Omega)$. Indeed, by the Young equality and the condition (SC), we have

$$\begin{split} \int_{\Omega} G^*(x, \left| \frac{g(x, |h|)}{|h|} h \right|) \, \mathrm{d}x &= \int_{\Omega} G^*(x, g(x, |h|)) \, \mathrm{d}x \\ &= \int_{\Omega} g(x, |h|) |h| - G(x, |h|) \, \mathrm{d}x \\ &\leq g^0 \int_{\Omega} G(x, |h|) \, \mathrm{d}x \\ &< \infty. \end{split}$$

Then, by the dominate convergence theorem, Lemma 2.8, we have

$$\frac{g(x,|u_{i_j}|)}{|u_{i_j}|}u_{i_j} \longrightarrow \frac{g(x,|u|)}{|u|}u \text{ in } L^{G^*(\cdot)}(\Omega).$$

Hence, by inequality (3.8), we have

$$\int_{\Omega} \frac{g(x, |u_{i_j}|)}{|u_{i_j}|} u_{i_j} v \, \mathrm{d} x \longrightarrow \int_{\Omega} \frac{g(x, |u|)}{|u|} uv \, \mathrm{d} x.$$

Since the weak limit is independent of the choice of the subsequence, it follows that $f_{1,2}(x_{1,2}, x_{2,3}, x_{3,3}) = f_{1,2}(x_{1,3}, x_{3,3}, x_{3,3})$

$$\int_{\Omega} \frac{g(x, |u_i|)}{|u_i|} u_i v \, \mathrm{d}x \longrightarrow \int_{\Omega} \frac{g(x, |u|)}{|u|} uv \, \mathrm{d}x.$$

Therefore $A'(u_i) \to A(u)$ in $W_0^{1,G(\cdot)}(\Omega)^*$.

Inspired by the proof of Theorem 1.7 of Lieberman [10], we have:

Lemma 3.5. Let B be defined in (3.5). Then B' satisfies (LS_3) .

Proof. Using the Hölder inequality, we have

$$(3.9) \qquad ||B'||_{\left(W_0^{1,G(\cdot)}(\Omega)\right)^*} = \sup\{\langle B'(u), v\rangle; \ ||v||_{1,G(\cdot)} \le 1\}$$
$$\leq \sup\left|\int_{\Omega} \frac{g(x, |\nabla u|)}{|\nabla u|} \nabla u \cdot \nabla v \, \mathrm{d}x\right|$$
$$\leq 2||g(x, |\nabla u|)||_{G^*(\cdot)}||v||_{1,G(\cdot)}.$$

Using the equivalent between Luxembourg norm and Orlicz norm, and the Young inequality, we have

$$||g(x, |\nabla u|)||_{G^*(\cdot)} \le ||g(x, |\nabla u|)||_{G^*(\cdot)}^0 \le 1 + \int_{\Omega} G^*(x, g(x, |\nabla u|) \, \mathrm{d}x.$$

Then, by the Young equality and the condition (SC), we obtain

$$||g(x,|\nabla u|)||_{G^*(\cdot)} \le g^0 \int_{\Omega} G(x,|\nabla u|) \,\mathrm{d}x.$$

So, by the inequality (3.9), we get

$$||B'||_{W_0^{1,G(\cdot)}(\Omega)^*} \le C\left(g^0 \int_{\Omega} G(x, |\nabla u|) \,\mathrm{d}x \,\mathrm{d}x + 1\right) ||v||_{1,G(\cdot)}.$$

Hence B' is bounded. Moreover, a similar argument to the one we used to prove (LS_2) , we get the continuity of B'.

Complete the proof of Lemma 3.5, that is, prove that B satisfies condition (S_0) . Let $\{u_i\}_i$ be a sequence in $W_0^{1,G(\cdot)}(\Omega)$ such that

$$u_i
ightarrow u$$
, $B'(u_i)
ightarrow v$ and $\langle B'(u_i), u_i
angle
ightarrow \langle v, u
angle$

for some $v\in W^{1,G(\cdot)}_0(\Omega)^*$ and $u\in W^{1,G(\cdot)}_0(\Omega).$ Then, we have

(3.10)
$$\langle B'(u_i) - B'(u), u_i - u \rangle$$
$$= \langle B'(u_i), u_i \rangle - \langle B'(u_i), u \rangle - \langle B'(u), u_i - u \rangle \to 0$$

On the other hand, from the condition (SC) and Cauchy-Schwarz inequality, we have for $\theta_t = tu + (1-t)u_i, t \in (0,1)$

$$\begin{split} &\left(\frac{g(x,|\nabla u|)}{|\nabla u|}\nabla u - \frac{g(x,|\nabla u_i|)}{|\nabla u_i|}\nabla u_i\right) \cdot (\nabla u - \nabla u_i) \\ &= \left(\int_0^1 \frac{\partial}{\partial t} \left(\frac{g(x,|\nabla \theta_t|)}{|\nabla \theta_t|}\nabla \theta_t\right) \, \mathrm{d}t\right) \cdot (\nabla u - \nabla u_i) \\ &= |\nabla u - \nabla u_i|^2 \int_0^1 \frac{g(x,|\nabla \theta_t|)}{|\nabla \theta_t|} \, \mathrm{d}t \\ &+ \int_0^1 g(x,|\nabla \theta_t|) \left(\frac{|\nabla \theta_t|g'(x,|\nabla \theta_t|)}{g(x,|\nabla \theta_t|)} - 1\right) \frac{(\nabla \theta_t \cdot (\nabla u - \nabla u_i))^2}{|\nabla \theta_t|^3} \, \mathrm{d}t \\ &\geq \min(1,g_0)|\nabla u - \nabla u_i|^2 \int_0^1 \frac{g(x,|\nabla \theta_t|)}{|\nabla \theta_t|} \, \mathrm{d}t. \end{split}$$

Which implies

$$\langle B'(u_i) - B'(u), u_i - u \rangle \ge \min(1, g_0) \int_{\Omega} \int_0^1 \frac{g(x, |\nabla \theta_t|)}{|\nabla \theta_t|} |\nabla u - \nabla u_i|^2 \, \mathrm{d}t \mathrm{d}x.$$

Now we write $S_1 = \{x \in \Omega, |\nabla u - \nabla u_i| \le 2|\nabla u|\}$ and $S_2 = \{x \in \Omega, |\nabla u - \nabla u_i| > 2|\nabla u|\}$. Then $S_1 \cup S_2 = \Omega$ and

$$\frac{1}{2}|\nabla u| \le |\nabla \theta_t| \le 3|\nabla u| \qquad \text{on } S_1 \text{ for } t \ge \frac{3}{4},$$

$$\frac{1}{4}|\nabla u - \nabla u_i| \le |\nabla \theta_t| \le 3|\nabla u - \nabla u_i| \qquad \text{on } S_2 \text{ for } t \le \frac{1}{4}.$$

Therefore

(3.11)
$$\langle B'(u_i) - B'(u), u_i - u \rangle$$

$$\geq C \bigg(\int_{S_1} \frac{g(x, |\nabla u|)}{|\nabla u|} |\nabla u - \nabla u_i|^2 \, \mathrm{d}x + \int_{S_2} G(x, |\nabla u - \nabla u_i|) \, \mathrm{d}x \bigg).$$

Hence

(3.12)
$$\int_{S_2} G(x, |\nabla u - \nabla u_i|) \, \mathrm{d}x \le C \langle B'(u_i) - B'(u), u_i - u \rangle.$$

To estimate the integrals over S_1 , using the condition (SC), $t \to g(x,t)$ is a nondecreasing function and the Hölder inequality in $L^2(S_1)$, we have

$$\begin{split} &\int_{S_1} G(x, |\nabla u - \nabla u_i|) \, \mathrm{d}x \\ &\leq C \int_{S_1} g(x, |\nabla u - \nabla u_i|) |\nabla u - \nabla u_i| \, \mathrm{d}x \\ &\leq C \int_{S_1} \left(\frac{g(x, |\nabla u|)}{|\nabla u|} |\nabla u| \right)^{\frac{1}{2}} |\nabla u - \nabla u_i| \left(g(x, |\nabla u - \nabla u_i|) \right)^{\frac{1}{2}} | \, \mathrm{d}x \\ &\leq C \left(\int_{S_1} \frac{g(x, |\nabla u|)}{|\nabla u|} |\nabla u - \nabla u_i|^2 \, \mathrm{d}x \right)^{\frac{1}{2}} \left(\int_{S_1} g(x, |\nabla u|) |\nabla u| \, \mathrm{d}x \right)^{\frac{1}{2}} \\ &\leq C \left(\int_{S_1} \frac{g(x, |\nabla u|)}{|\nabla u|} |\nabla u - \nabla u_i|^2 \, \mathrm{d}x \right)^{\frac{1}{2}} \left(\int_{S_1} G(x, |\nabla u|) \, \mathrm{d}x \right)^{\frac{1}{2}}. \end{split}$$

Hence, using the inequality (3.11), we have

(3.13)
$$\int_{S_1} G(|\nabla u - \nabla u_i|) \, \mathrm{d}x$$
$$\leq C \left(\langle B'(u_i) - B'(u), u_i - u \rangle \right)^{\frac{1}{2}} \left(\int_{\Omega} G(x, |\nabla u|) \, \mathrm{d}x \right)^{\frac{1}{2}}.$$

Collecting the inequalities (3.11), (3.12), (3.13), we have

$$\int_{\Omega} G(|\nabla u - \nabla u_i|) \, \mathrm{d}x$$

$$\leq C \bigg(\left(\langle B'(u_i) - B'(u), u_i - u \rangle \right)^{\frac{1}{2}} \left(\int_{\Omega} G(|\nabla u|) + G(x, |u|) \, \mathrm{d}x \right)^{\frac{1}{2}}$$

$$+ \langle B'(u_i) - B'(u), u_i - u \rangle \bigg).$$

Therefore, by the inequality (3.10), Theorem 2.12 and Lemma 2.7, we have $u_i \to u$ in $W_0^{1,G(\cdot)}(\Omega)$.

Lemma 3.6. Let B be defined in (3.5). Then B and B' satisfies (LS_4) .

Proof. Let $u \neq 0$, by the inequalities (2.1) and (2.2), for all $t \in \mathbb{R}^+$ we have

$$B(tu) = \int_{\Omega} G(x, |\nabla tu|) \, \mathrm{d}x \le \max(t^{g^0+1}, t^{g_0+1}) \int_{\Omega} G(x, |\nabla u|) \, \mathrm{d}x$$

Then $\lim_{t \to +\infty} B(tu) = +\infty$.

Next, by the condition (SC) and Proposition 2.2.7 in [8], there exists $\tilde{G}(\cdot) \in \Phi(\Omega)$ with $\tilde{G}(\cdot) \approx G(\cdot)$ which is a strictly increasing. Then, we have

$$\langle B'(u), u \rangle = \int_{\Omega} g(x, |\nabla u|) |\nabla u| \, \mathrm{d}x$$

$$\geq (g_0 + 1) \int_{\Omega} G(x, |\nabla u|) \, \mathrm{d}x$$

$$\geq C \int_{\Omega} \tilde{G}(x, |\nabla u|) \, \mathrm{d}x$$

$$\geq 0.$$

Note that, the last inequality result from the fact if $u \in W_0^{1,G(\cdot)}$ and $\nabla u = 0$ then u = 0.

So, if $u \in S_B$, then, by the previous inequality, we have $\langle B'(u), u \rangle \geq g_0 + 1$. Therefore B and B' satisfies the hypothesis (LS_4) .

Theorem 3.7. Let $G(\cdot) \in \Phi(\mathbb{R}^N)$ satisfy (SC), (A_0) and (A_1) . Let A and B be the two functionals defined in (3.4), (3.5). Then there exists a nondecreasing sequence of nonnegative eigenvalues $\{\lambda_i\}_i$ of (3.2) such that $\lambda_i \to \infty$ as $i \to \infty$.

Proof. By Lemmas 3.3-3.6 combined with Theorem 3.1, there exists a nonnegative nonincreasing sequence $\{\mu\}_i$ such that $\mu_i \to 0$ as $i \to \infty$ and each μ_i is an eigenvalue of $A'(u) = \mu B'(u)$ which means, for every $v \in W_0^{1,G(\cdot)}(\Omega)$, we have

$$\int_{\Omega} \frac{g(x,|u|)}{|u|} uv \, \mathrm{d}x = \mu \int_{\Omega} \frac{g(x,|\nabla u|)}{|\nabla u|} \nabla u \cdot \nabla v \, \mathrm{d}x.$$

Which is equivalent

$$\int_{\Omega} \frac{g(x, |\nabla u|)}{|\nabla u|} \nabla u \cdot \nabla v \, \mathrm{d}x = \frac{1}{\mu} \int_{\Omega} \frac{g(x, |u|)}{|u|} uv \, \mathrm{d}x.$$

Then $\lambda_i := \frac{1}{\mu_i} \to \infty$ as $i \to \infty$ is a nondecreasing sequence of nonnegative eigenvalues of (3.2).

A. BENYAICHE AND I. KHLIFI

References

- H. Amann, Lusternik-Schnirelman theory and non-linear eigenvalue problems, Math. Ann. 199 (1972), 55-72. https://doi.org/10.1007/BF01419576
- [2] L. Barbu, G. Moroşanu, and C. Pintea, A nonlinear elliptic eigenvalue-transmission problem with Neumann boundary condition, Ann. Mat. Pura Appl. (4) 198 (2019), no. 3, 821–836. https://doi.org/10.1007/s10231-018-0801-5
- [3] A. Benyaiche and I. Khlifi, Sobolev-Dirichlet problem for quasilinear elliptic equations in generalized Orlicz-Sobolev spaces, Positivity 25 (2021), no. 3, 819–841. https://doi. org/10.1007/s11117-020-00789-z
- [4] F. E. Browder, Existence theorems for nonlinear partial differential equations, in Global Analysis (Proc. Sympos. Pure Math., Vol. XVI, Berkeley, Calif., 1968), 1–60, Amer. Math. Soc., Providence, RI, 1970.
- [5] R. Chiappinelli, What do you mean by nonlinear eigenvalue problems?, Axioms. 7 (2018), 39.
- [6] X. Fan, Q. Zhang, and D. Zhao, Eigenvalues of p(x)-Laplacian Dirichlet problem, J. Math. Anal. Appl. 302 (2005), no. 2, 306-317. https://doi.org/10.1016/j.jmaa.2003. 11.020
- [7] J. P. García Azorero and I. Peral Alonso, Existence and nonuniqueness for the p-Laplacian: nonlinear eigenvalues, Comm. Partial Differential Equations 12 (1987), no. 12, 1389–1430. https://doi.org/10.1080/03605308708820534
- [8] P. Harjulehto and P. Hästö, Orlicz spaces and generalized Orlicz spaces, Lecture Notes in Mathematics, 2236, Springer, Cham, 2019. https://doi.org/10.1007/978-3-030-15100-3
- [9] A. Lê, Eigenvalue problems for the p-Laplacian, Nonlinear Anal. 64 (2006), no. 5, 1057–1099. https://doi.org/10.1016/j.na.2005.05.056
- [10] G. M. Lieberman, The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations, Comm. Partial Differential Equations 16 (1991), no. 2-3, 311–361. https://doi.org/10.1080/03605309108820761
- [11] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics, 1034, Springer-Verlag, Berlin, 1983. https://doi.org/10.1007/BFb0072210
- [12] V. D. Rădulescu and S. Saiedinezhad, A nonlinear eigenvalue problem with p(x)-growth and generalized Robin boundary value condition, Commun. Pure Appl. Anal. 17 (2018), no. 1, 39–52.
- [13] M. Tienari, Lusternik-Schnirelmann theorem for the generalized Laplacian, J. Differential Equations 161 (2000), no. 1, 174–190. https://doi.org/10.1006/jdeq.2000.3712
- [14] E. Zeidler, The Lusternik-Schnirelmann theory for indefinite and not necessarily odd nonlinear operators and its applications, Nonlinear Anal. 4 (1980), no. 3, 451-489. https://doi.org/10.1016/0362-546X(80)90085-1
- [15] E. Zeidler, Nonlinear Functional Analysis and Its Applications. III, translated from the German by Leo F. Boron, Springer-Verlag, New York, 1985. https://doi.org/10.1007/ 978-1-4612-5020-3

Allami Benyaiche Ibn Tofail University Department of Mathematics B.P: 133 Kenitra 14000, Morocco Email address: allami.benyaiche@uit.ac.ma

DIRICHLET EIGENVALUE PROBLEMS UNDER MUSIELAK-ORLICZ GROWTH 1151

ISMAIL KHLIFI IBN TOFAIL UNIVERSITY DEPARTMENT OF MATHEMATICS B.P: 133 KENITRA 14000, MOROCCO Email address: is.khlifi@gmail.com