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DIRICHLET EIGENVALUE PROBLEMS UNDER
MUSIELAK-ORLICZ GROWTH

ALLAMI BENYAICHE AND ISMAIL KHLIFI

ABSTRACT. This paper studies the eigenvalues of the G(-)-Laplacian
Dirichlet problem

v
div (MW) — (Mu> inQ,
[Vul Jul
u=20 on 09,
where € is a bounded domain in RN and g is the density of a generalized

d-function G(-). Using the Lusternik-Schnirelmann principle, we show
the existence of a nondecreasing sequence of nonnegative eigenvalues.

1. Introduction

In the fields of partial differential equations and the calculus of variations,
there has been much research on non-standard growth problems, such as the
eigenvalue problems [5]. The study of eigenvalue problems relies on the Luster-
nik-Schnirelmann (L-S) theory of critical points for an even functional on
a manifold. The presentations of this theory, in both finite and infinite-
dimensional spaces, can be found in [1,4,14,15].

A mathematical prototype for nonlinear elliptic eigenvalue problems is ex-
pressible by involving the p-Laplacian operator

—div (|Vu/P7?Vu) = A (|ufP?u) inQ,

1.1
(L) u=0 on 0N,

where 1 < p < oo and Q is a bounded domain of RY. The problem (1.1) has
attracted much attention and has been extensively studied in the literature (see
for examples [2,7,9]). One of the important consequences of the Lusternik-
Schnirelmann principle is the existence, exactly as for the classical Laplace
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operator (p = 2), of an increasing sequence of eigenvalues

A<l S, A =00
Later on, this result has been generalized to variable exponent and Orlicz
cases
—div (|Vu|p(””)_2Vu) =A (|u|p(w)_2u> in Q,
u=20 on 0f)
and

—div <9(||VV:T|)W> = (g(|5L||)u) in Q,

u=20 on 01,
where  — p(x) is a continuous function on Q such that 1 < p(x) < oo and
t — g(t) is the density of a ®-function G (see [6,12,13]).

One naturally asks whether a similar result holds in the Musielak-Orlicz
case. For this, we consider the following eigenvalue problem under generalized

Orlicz growth
_div (g(w,IVuI)W> — (WWU> Q.
[Vl |ul

u=20 on 0f2,

(1.2)

where g(x, -) is the right-hand derivative of a ®-function G(x,-). This situation
covers not only the variable exponent G(z,t) = t?®) and Orlicz case G(,t) =
G(t), but also the variable exponent perturbation G(z,t) = t?®) In(e + t),
the double phase G(z,t) = t? + a(z)t? and their various combinations (see
[8]). Note that, some particular vector inequalities are helpful in the study of
the eigenvalue problem for the p-Laplacian. In our situation, a lack of these
inequalities and homogeneity are a major source of difficulties. To overcome
these problems, we developed a method inspired by Lieberman’s pioneering
article [10], which allows us to apply the L-S principle for establish the existence
of a nondecreasing sequence of nonnegative eigenvalue tending to infinity of the
problem (1.2) (see Theorem 3.7).

2. Musielak-Orlicz-Sobolev spaces

To deal with the problem (1.2), we need Musielak-Orlicz-Sobolev spaces.
Most of the results concerning these spaces are given in Musielak’s monograph
[11], hence the alternative name of Musielak-Orlicz spaces.

Definition 2.1. A function G : 2 x [0,00) — [0,00] is called a generalized
®-function, denoted by G(-) € ®(Q), if the following conditions hold:
e For each t € [0, 00), the function G(-,t) is measurable.
e For a.e. x € Q, the function G(z, ) is a ®-function, i.e.,
(1) G(z,0) =lim;_,o+ G(z,t) = 0 and lim;_, o G(x,t) = o0;
(2) G(z,-) is increasing and convex.
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Note that, a generalized ®-function can be represented as

G(x,t)z/o g(z,s)ds,

where g(z, -) is the right-hand derivative of G(z, -). Furthermore for each = € €,
the function g(z,-) is right-continuous and nondecreasing.

Assumptions. We say that G(-) satisfies
(SC) : If for a.e. x € €, the function t — g(z,t) is a C1(RT) and there exist
two constants gg, g° > 0 such that,

tg'(z,t)

g(x,t)

(Ap) : If there exists a constant ¢y > 1 such that,
1

— < G(z,1) < ¢y for ae. z € Q.
Co

< g’

go <

(Ay) : If there exists C' > 0 such that, for every z,y € B C Q with R < 1, we
have

1
GBR(x7t> S CGBR(:U?t) When GER(t) € |:L ]%N:| )
where G _(t) := infp, G(z,1).

Remark 2.2. 1) Note that (A;) corresponds to local log-Holder continuity in
the variable exponent case (see Proposition 7.1.2 in [8]). In the double phase
case G(z,t) = t' + a(x)td, condition (A;) is equivalent to a(y) — a(z) <
Cly — x|%(q_p) (see Proposition 7.2.2 in [8]).

2) The condition (SC') implies

tg(x,t)
G(z,t)

So, we have the following inequalities [3]

go+1< <g’+1.

(2.1) o9 TG(x,t) < G(x,0t) < JQOHG(:E,t) forx eQ, t>0ando > 1.

(2.2) ago'HG(x,t) < G(z,ot) < 09T G(x,t) forz e Q, t>0ando < 1.
Definition 2.3. We define G*(-) the conjugate ®-function of G(-), by
G*(x,s) :=sup(st — G(z,t)) forxz € Qand s> 0.
>0

Note that G*(+) is also a generalized ®-function and can be represented as

t
G*(a,1) = / g (z, 5)ds,
0

with g~ 1(z, s) ;== sup{t > 0: g(z,t) < s}.
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Remark 2.4. If G(-) satisfies (SC), then G*(+) satisfies also (SC), as follows
041 tg(a,t +1
) PO gG*(Efvt)) = gogo '
The functions G(-) and G*(-) satisfies the following Young inequality
st < G(z,t) + G*(z,s) forx € Q and s,t > 0.
Further, we have the equality if s = g(x,t) or t = g~ 1(x, s).

Definition 2.5. Let G(-) € ®(RY), the generalized Orlicz space, also called
Musielak-Orlicz space, is defined as the set

(2.3)

LEOQ) :={u e L°(Q) : ;%/Qe(x,A\M)M =0},

where L°(Q) is the set of measurable functions in Q. If G(-) satisfies (SC),
then

LEOQ) = {u e L(Q) : / G(z, |u|)dz < oo}
Q
Remark 2.6. On the generalized Orlicz space, we define the following norms:
%) dr <1}
e Orlicz norm: ||u|\0G(,) = sup{|/ u(z)v(z) dz| : / G*(z, |v])dz < 1}.
Q Q

These norms are equivalent, precisely, we have

e Luxembourg norm: [|ul|g() = inf{\A >0: / G(z,
Q

lullaey < Mlulley < 2lulla)-
The functions G(-) and G*(-) satisfy the Holder inequality

/ u(x)v(x) de
Q
The following lemmas establish properties of convergent sequences in general-

ized Orlicz spaces (see [8]).

Lemma 2.7. Let G(-) € ®(Q). For any sequence {u;}; in LSO (Q), we have
the following properties: If G(-) satisfies (SC), then

< 2l|ullgyllvlla=(y foru € L (Q) and v € L O (Q).

l|uillgy — 0 (resp. 1;00) <= / G(z,|ui(z)|)dz = 0 (resp. 1;00).
Q

Lemma 2.8. Let G(-) € ®(Q2) and {u;}; be a sequence of measurable functions
u;. Assume the sequence {u;}; converges almost everywhere to a measurable
function u, and is dominated by a function h € L¢C)(Q). Then all u; as well
as u are in LS (Q) and the sequence {u;}; converges to u in LEC) ().
Lemma 2.9. Let G(-) € ®(Q) satisfies (SC) and {u;}; be a sequence in
LEO(Q). Ifu; — u in LEO(Q), then there ewist a subsequence {u;,}; and
a function h € LEO)(Q) such that to ui; — u, for a.e. in Q and for all j,
ui, ()] < h(z) for a.e. in Q.
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Proof. Since u; — u in L&) (Q), then by Lemma 2.7, we have

/ G(z, |uj(z) — u(x)]) de — 0.
Q

So, for any 6 > 0, let As; := {x € Q: |u;(z) —u(x)| > ¢}. Using the inequalities
(2.1), (2.2) and the condition (Ap), we get

imin(590,590)|A5,i| < / G(z,6)dx
Co As i

< G(z,|u; —ul)dx
As,i

g/G(:E,|ui—u|)dw.
)

Hence, |45, — 0, and u; — w in measure. Therefore, there exists a subse-
quence (u;;) of (u;) which converge to u, for a.e. in Q.
Then we can define
oo
h:= Z |ui; — ul
j=1

and it can be seen that h € LE)(Q) and h is a dominating function of (ui;)
for all j. O

Definition 2.10. We define the generalized Orlicz-Sobolev space by
WHEO(Q):={u e L(Q)NLL(Q) : |[Vu| € L (Q) in the distribution sense},
equipped with the norm

lulli,ae) = llullec) + [IVullae.
Definition 2.11. Wol’G(')(Q) is the closure of C§°(2) in WH¢()(Q).

Next, we recall the norm version of the Poincare inequality, which will be
investigated in this work (see [8]).

Theorem 2.12. Let Q be a bounded set of RN and G(-) € ®(Q) satisfy (SC),
(Ao) and (Ay). For every u € WOI’G(')(Q), we have
l[ullacy < ClIVullaey-

In particular, [|Vul|g.) is a norm on Wol’G(')(Q) and it is equivalent to the
norm |[ulli,q()-

The following compact embedding theorem for Musielak-Sobolev spaces is
given by P. Hasto [8].

Theorem 2.13. Let G(-) € ®(RYN) satisfy (SC), (Ag) and (A1) and let Q be
bounded. Then
Wy ¢ (Q) s LEO(Q).
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3. Eigenvalue problems for the G(-)-Laplacian
3.1. Lusternik-Schnirelmann principle (L-S principle)

We recall here a version of the Lusternik-Schnirelmann principle, which
Browder discussed in [4] and Zeidler in [14, 15].

Theorem 3.1. Let X be a real reflexive Banach space. If A, B are two func-
tionals on X satisfying the following properties:

(LS1): A,B: X — R are even functionals and that A, B € C*(X,R) with
A(0) = B(0) = 0.

(LSs): A’ is strongly continuous (i.e., u; — u in X implies A'(u;) — A'(u))
and,

(A'(u),u) =0, u € coSp implies A(u) =0,
A(u) =0, u€ coSp implies u =0,

where coSp is the closed convexr hull of Sp := {u € X, B(u) = 1}.

(LS3): B’ is continuous, bounded and satisfies (Sp), i.e., as i — 00,

w; — u, B'(u;) = v, (B'(w;),u;) — (v,u) implies u; — u.
(LSy): The level set Sp is bounded and u Z 0 implies
(B'(u),u) >0, Jim B(tu) = oo, inf (B'(u),u) > 0.
— 00

u€ESR
Then the eigenvalue problem
(3.1) A'(u) = pB'(u), weSp, peR,

admits a sequence of eigenpairs {u;, p;} such that u; = u, p — 0 as i — o
and p; # 0 for all i.

3.2. Application of L-S principle in Wol’c(')(ﬂ)

In the sequel, let G(-) € ®(RY) satisfy (SC), (Ao), (A1), G(z,-) € C*(]0,00))
for every = € Q and C a generic constant which may change from line to line.
We consider the following eigenvalue problem

_div (MW> _ <9($|’“)u> Q.
[Vl Jul
u=20 on 012,

(3.2)
where g(z,-) is the derivative of G(z,-). The existence of a weak solution to
the Dirichlet-Sobolev problem associated of (3.2) has been studied in [3].

Definition 3.2. Let A € R and u € W&’G(‘)(Q). (u, A) is called a solution of
the problem (3.2) if

(3.3) /MVu~de:A/ 9@ 1u) g, Vo e WY ().

If (u, ) is a solution of the problem (3.2) and u % 0, as usual, we call A\ and u
an eigenvalue and an eigenfunction corresponding to A of (3.2), respectively.
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In what follows we use the previous version of the L-S principle in order
to prove the existence of a sequence of eigenvalues for problem (3.2). For this

reason, we define on X = VVO1 ’G(')(Q) the functionals
(3.4) Alu) = / Gz, Ju]) e,
Q

(3.5) Bu) = /QG(x, V) da.

Lemma 3.3. Let A and B be defined in (3.4), (3.5). Then A and B satisfies
(LS1).

Proof. Let G(-) € ®(RY). By definition of a generalized ®-function, we have
G(x,0) = 0 which implies A(0) = B(0) = 0. The C'-smooth regularity of
the functionals A and B follows by computing the Gateaux derivatives of A
and B at u € W&’G(')(Q) in the direction v € Wol’G(')(Q). Precisely, for every
u,v € W&’G(')(Q), we have

(3.6) <A/(u),v>:/ Muvdz,
o |ul
Vul)
3.7 B'(u),v :/%vu-vudx.
(37) B0 = [ 450
Then A and B satisfies (LS7). d

Lemma 3.4. Let A be defined in (3.4). Then A’ satisfies (LSs).

Proof. Let u € W(}’G(')(Q), by the condition (SC), we have

Aw) = [ G ful)de < — [ gla ulul de < (') )

Then, if (A’(u),u) = 0 implies A(u) = 0. )
Next, we assume A(u) = 0. By Proposition 2.2.7 in [8], there exists G(-) €
®(0Q) with G(-) = G(-) which is a strictly increasing. So, we have

0< / Gz, [u]) dz < C’/ G(z,|ul)de =0 implies u =0.
Q Q

To end the proof of Lemma 3.4, it remains for us to prove that A’ is strongly
continuous. Let u; — u in W&’G(')(Q), we need to show that

A'(u;) — A(u) in WO @Q)*.

For every v € VVO1 ’G(')(Q), using the Holder inequality, we get

(3.8) / Muiv dz 7/ 9(z. |u|)uv dz
o  |uil o |ul
ol ludl |ul
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< ofjsleul,,_ ot
i u]

vl
G ()
Since u; — u in W1 G )(9)7 then by the compact embedding Theorem 2.13, we
have u; = v in LG( )(Q). So, using the reverse dominate convergence theorem,
Lemma 2.9, there are a subsequence {u;, }; and a function h € LE)(Q) such
that u;; — u for a.e. in Q and |u;,| < h.
As the function ¢t — g(«,t) is continuous and increasing, we have

g(x, Iulz‘j)ul_j . 9($|7 ||u|)u for ae. in O and g(l|“7 |u|z‘j|)ul_j < g(ﬂT;J'h)h.
i U Uj;

Note that g(‘f"lhl) h € LE ()(Q). Indeed, by the Young equality and the condi-

tion (SC), we have

fLore !

m ‘ / G*(,g(x, 1)) dz
= [ et = Gla. i) do

< / Gz, 1)) dz
Q

< 00.

Then, by the dominate convergence theorem, Lemma 2.8, we have

g, |ug,) g Jul) L9 0(q).

| Jul

Hence, by inequality (3.8), we have

e — [ 25
—
o lugl \UI

Since the weak limit is independent of the choice of the subsequence, it follows

that
T
Therefore A’(u;) — A(u) in VV1 G )(Q) O

Inspired by the proof of Theorem 1.7 of Lieberman [10], we have:
Lemma 3.5. Let B be defined in (3.5). Then B’ satisfies (LSs).
Proof. Using the Holder inequality, we have

(3.9) 18] .00 @y = Sup{(B/ ). 0): ol < 1)
SSUP/MVU'VUdl‘
o |Vul

< 2|g(, [Vulla- ) l|vl1,a0)-
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Using the equivalent between Luxembourg norm and Orlicz norm, and the
Young inequality, we have

llg(, [Vul)llg-y < llg(z, [Vu))lle

<1+/G*xg( [Vul) dz

Then, by the Young equality and the condition (SC'), we obtain

f/<xx4vuodx
Q

||B/\|W01,c<.)(9)* <C <g0/QG(x, |Vu|) de dz + 1) llv]]1,¢0)-

llg(, [Vul)

So, by the inequality (3.9), we get

Hence B’ is bounded. Moreover, a similar argument to the one we used to
prove (LS5), we get the continuity of B’.

Complete the proof of Lemma 3.5, that is, prove that B satisfies condition
(So). Let {u;}; be a sequence in W’ at )(Q) such that

w = u, B'(u;)) —v and (B'(u;),u;) — (v,u)
for some v € T/V1 Gl )(Q)* and u € W&’G(')(Q). Then, we have

(3.10) (B'(u;) — B'(u),u; — u)
= (B'(ui),us) = (B'(ui),u) — (B'(u),u; —u) = 0.

On the other hand, from the condition (SC) and Cauchy-Schwarz inequality,
we have for 6; = tu + (1 — t)u;, t € (0,1)

g(@,[Vul) o g(@,[Vui]) o ) o
( Yl Vu Vi Vu; | - (Vu— V)

Lo g(z, |Vb])
= </0 g <|V9t Vﬁt) dt> - (Vu — Vu;)
1
_ |Vu—Vui|2/ 9@ [VO) o
0

VO, |
1 ’ 9
V0|9’ (x, [V:]) ) (VO - (Vu — Vu,))
/og( | t|)< g(z.[V,]) V0,3

" g(x, V)
V0|

Y

min(1, go)|Vu — Vu;|? / dt.
0

Which implies

(B'(u;) — B'(u),u; — u) > min(1, go) // éZTt |Vu — Vu;|? dtdz.
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Now we write S1 = {x € Q, |Vu — Vu,| < 2|Vu|} and S = {x € Q, |Vu —
Vu;| > 2|Vu|}. Then S; USs = Q and

1 3
§|Vu| < |V, < 3|Vu| on S; fort > 7
1 1
1|Vu—Vui| < |VOy| <3|[Vu—Vu;| on Sy fort < 1
Therefore

(3.11) (B'(u;) — B'(uw),u; — u)

ZC(/ M|VU—VU¢\2dx+/ G(x7|Vu—Vui)dm).
s |Vl Sy

Hence
(3.12) / G(x,|Vu — Vu,|)dz < C(B'(u;) — B'(u),u; — u).
Sa

To estimate the integrals over Sy, using the condition (SC), t — g(x,t) is a
nondecreasing function and the Holder inequality in L?(S;), we have

G(z,|Vu — Vu,|) dz
S

<C | g(z,|Vu— Vu|)|Vu — Vu;| dz
S1

IN

C (g(x,Vu)|vu|> |Vu—Vui|(g(x,|Vu—Vui|))% | da
S [Vl

o [ 2l gu - vupar) ([ o vuivalar)
Sy |VU| S

1

C (/S *‘qu— Vui|2dm> ’ (/S Gla, Vu)dm) "

Hence, using the inequality (3.11), we have

IN

IN

(3.13) G(|Vu — Vuy|) dx
S1

2

[N

< C ((B'(u3) — B'(u),u; —u)) ( A G(z,|Vul) dx)

Collecting the inequalities (3.11), (3.12), (3.13), we have

G(|Vu — Vu,|) dz
Q

< C( ((B'(u;) = B'(u), ui —u))

N

</Q G(|Vul) + Gla, |u|)daz)
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+ (B'(u;) — B'(u), u; — u))
Therefore, by the inequality (3.10), Theorem 2.12 and Lemma 2.7, we have
u; — u in Wol’G(')(Q). O
Lemma 3.6. Let B be defined in (3.5). Then B and B’ satisfies (LSy).
Proof. Let u # 0, by the inequalities (2.1) and (2.2), for all ¢ € RT we have

B(tu) = /QG(x, |Vitul)de < max(t90+1,t90+1) /Q G(z,|Vul) dz.

Then lim;_, 4 o, B(tu) = +o0. )
Next, by the condition (SC) and Proposition 2.2.7 in [8], there exists G(-) €
®(Q) with G(-) = G(-) which is a strictly increasing. Then, we have

(B (u),u) = /Q o, |Vul) V] dz
> (go+1) / Gz, |Vu]) dz

> C/ G(z, |Vu|) dz
Q
> 0.
Note that, the last inequality result from the fact if u € WO1 G0)
then v = 0.
So, if u € Sp, then, by the previous inequality, we have (B’(u),u) > go + 1.
Therefore B and B’ satisfies the hypothesis (LSy). O

and Vu =0

Theorem 3.7. Let G(-) € ®(RY) satisfy (SC), (Ag) and (A;). Let A and B
be the two functionals defined in (3.4), (3.5). Then there exists a nondecreasing
sequence of nonnegative eigenvalues {\;}; of (3.2) such that \; — oo as i — oo.

Proof. By Lemmas 3.3-3.6 combined with Theorem 3.1, there exists a nonneg-
ative nonincreasing sequence {u}; such that u; — 0 as ¢ — oo and each y; is

an eigenvalue of A'(u) = pB’(u) which means, for every v € Wol’G(')(Q), we

have
/ 9(z, |u|)uvdx=u/ 9@ VU o vy de.
a |v a [|Vyl

Which is equivalent

/ 9@ |Vu) o o1 [ glafu)
Q |Vul HJa |ul

Then \; := #i — 00 as i — oo is a nondecreasing sequence of nonnegative
eigenvalues of (3.2). O
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