
J. Korean Math. Soc. 59 (2022), No. 6, pp. 1139–1151

https://doi.org/10.4134/JKMS.j210669

pISSN: 0304-9914 / eISSN: 2234-3008

DIRICHLET EIGENVALUE PROBLEMS UNDER

MUSIELAK-ORLICZ GROWTH

Allami Benyaiche and Ismail Khlifi

Abstract. This paper studies the eigenvalues of the G(·)-Laplacian
Dirichlet problem−div

(
g(x, |∇u|)
|∇u|

∇u
)

= λ

(
g(x, |u|)
|u|

u

)
in Ω,

u = 0 on ∂Ω,

where Ω is a bounded domain in RN and g is the density of a generalized
Φ-function G(·). Using the Lusternik-Schnirelmann principle, we show

the existence of a nondecreasing sequence of nonnegative eigenvalues.

1. Introduction

In the fields of partial differential equations and the calculus of variations,
there has been much research on non-standard growth problems, such as the
eigenvalue problems [5]. The study of eigenvalue problems relies on the Luster-
nik-Schnirelmann (L-S) theory of critical points for an even functional on
a manifold. The presentations of this theory, in both finite and infinite-
dimensional spaces, can be found in [1, 4, 14,15].

A mathematical prototype for nonlinear elliptic eigenvalue problems is ex-
pressible by involving the p-Laplacian operator

(1.1)

{
−div

(
|∇u|p−2∇u

)
= λ

(
|u|p−2u

)
in Ω,

u = 0 on ∂Ω,

where 1 < p < ∞ and Ω is a bounded domain of RN . The problem (1.1) has
attracted much attention and has been extensively studied in the literature (see
for examples [2, 7, 9]). One of the important consequences of the Lusternik-
Schnirelmann principle is the existence, exactly as for the classical Laplace
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operator (p = 2), of an increasing sequence of eigenvalues

λ1 ≤ λ2 ≤ · · · ≤ λi ≤ · · · , λi →∞.
Later on, this result has been generalized to variable exponent and Orlicz

cases {
−div

(
|∇u|p(x)−2∇u

)
= λ

(
|u|p(x)−2u

)
in Ω,

u = 0 on ∂Ω

and −div

(
g(|∇u|)
|∇u|

∇u
)

= λ

(
g(|u|)
|u|

u

)
in Ω,

u = 0 on ∂Ω,

where x → p(x) is a continuous function on Ω such that 1 < p(x) < ∞ and
t→ g(t) is the density of a Φ-function G (see [6, 12,13]).

One naturally asks whether a similar result holds in the Musielak-Orlicz
case. For this, we consider the following eigenvalue problem under generalized
Orlicz growth

(1.2)

−div

(
g(x, |∇u|)
|∇u|

∇u
)

= λ

(
g(x, |u|)
|u|

u

)
in Ω,

u = 0 on ∂Ω,

where g(x, ·) is the right-hand derivative of a Φ-function G(x, ·). This situation
covers not only the variable exponent G(x, t) = tp(x) and Orlicz case G(x, t) =
G(t), but also the variable exponent perturbation G(x, t) = tp(x) ln(e + t),
the double phase G(x, t) = tp + a(x)tq and their various combinations (see
[8]). Note that, some particular vector inequalities are helpful in the study of
the eigenvalue problem for the p-Laplacian. In our situation, a lack of these
inequalities and homogeneity are a major source of difficulties. To overcome
these problems, we developed a method inspired by Lieberman’s pioneering
article [10], which allows us to apply the L-S principle for establish the existence
of a nondecreasing sequence of nonnegative eigenvalue tending to infinity of the
problem (1.2) (see Theorem 3.7).

2. Musielak-Orlicz-Sobolev spaces

To deal with the problem (1.2), we need Musielak-Orlicz-Sobolev spaces.
Most of the results concerning these spaces are given in Musielak’s monograph
[11], hence the alternative name of Musielak-Orlicz spaces.

Definition 2.1. A function G : Ω × [0,∞) −→ [0,∞] is called a generalized
Φ-function, denoted by G(·) ∈ Φ(Ω), if the following conditions hold:

• For each t ∈ [0,∞), the function G(·, t) is measurable.
• For a.e. x ∈ Ω, the function G(x, ·) is a Φ-function, i.e.,

(1) G(x, 0) = limt→0+ G(x, t) = 0 and limt→∞G(x, t) =∞;
(2) G(x, ·) is increasing and convex.
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Note that, a generalized Φ-function can be represented as

G(x, t) =

∫ t

0

g(x, s) ds,

where g(x, ·) is the right-hand derivative of G(x, ·). Furthermore for each x ∈ Ω,
the function g(x, ·) is right-continuous and nondecreasing.

Assumptions. We say that G(·) satisfies
(SC) : If for a.e. x ∈ Ω, the function t → g(x, t) is a C1(R+) and there exist
two constants g0, g

0 > 0 such that,

g0 ≤
tg′(x, t)

g(x, t)
≤ g0.

(A0) : If there exists a constant c0 > 1 such that,

1

c0
≤ G(x, 1) ≤ c0 for a.e. x ∈ Ω.

(A1) : If there exists C > 0 such that, for every x, y ∈ BR ⊂ Ω with R ≤ 1, we
have

GBR(x, t) ≤ CGBR(y, t) when G−BR(t) ∈
[
1,

1

RN

]
,

where G−BR(t) := infBR G(x, t).

Remark 2.2. 1) Note that (A1) corresponds to local log-Holder continuity in
the variable exponent case (see Proposition 7.1.2 in [8]). In the double phase
case G(x, t) = tP + a(x)tq, condition (A1) is equivalent to a(y) − a(x) ≤
C|y − x|

N
p (q−p) (see Proposition 7.2.2 in [8]).

2) The condition (SC) implies

g0 + 1 ≤ tg(x, t)

G(x, t)
≤ g0 + 1.

So, we have the following inequalities [3]

(2.1) σg0+1G(x, t) ≤ G(x, σt) ≤ σg
0+1G(x, t) for x ∈ Ω, t ≥ 0 and σ ≥ 1.

(2.2) σg
0+1G(x, t) ≤ G(x, σt) ≤ σg0+1G(x, t) for x ∈ Ω, t ≥ 0 and σ ≤ 1.

Definition 2.3. We define G∗(·) the conjugate Φ-function of G(·), by

G∗(x, s) := sup
t≥0

(st−G(x, t)) for x ∈ Ω and s ≥ 0.

Note that G∗(·) is also a generalized Φ-function and can be represented as

G∗(x, t) =

∫ t

0

g−1(x, s) ds,

with g−1(x, s) := sup{t ≥ 0 : g(x, t) ≤ s}.
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Remark 2.4. If G(·) satisfies (SC), then G∗(·) satisfies also (SC), as follows

(2.3)
g0 + 1

g0
≤ tg−1(x, t)

G∗(x, t)
≤ g0 + 1

g0
.

The functions G(·) and G∗(·) satisfies the following Young inequality

st ≤ G(x, t) +G∗(x, s) for x ∈ Ω and s, t ≥ 0.

Further, we have the equality if s = g(x, t) or t = g−1(x, s).

Definition 2.5. Let G(·) ∈ Φ(RN ), the generalized Orlicz space, also called
Musielak-Orlicz space, is defined as the set

LG(·)(Ω) := {u ∈ L0(Ω) : lim
λ→0

∫
Ω

G(x, λ|u|) dx = 0},

where L0(Ω) is the set of measurable functions in Ω. If G(·) satisfies (SC),
then

LG(·)(Ω) = {u ∈ L0(Ω) :

∫
Ω

G(x, |u|) dx <∞}.

Remark 2.6. On the generalized Orlicz space, we define the following norms:

• Luxembourg norm: ||u||G(·) = inf{λ > 0 :

∫
Ω

G(x,
|u|
λ

) dx ≤ 1}.

• Orlicz norm: ||u||0G(·) = sup{|
∫

Ω

u(x)v(x) dx| :
∫

Ω

G∗(x, |v|) dx ≤ 1}.

These norms are equivalent, precisely, we have

||u||G(·) ≤ ||u||0G(·) ≤ 2||u||G(·).

The functions G(·) and G∗(·) satisfy the Hölder inequality∣∣∣∣∫
Ω

u(x)v(x) dx

∣∣∣∣ ≤ 2||u||G(·)||v||G∗(·) for u ∈ LG(·)(Ω) and v ∈ LG
∗(·)(Ω).

The following lemmas establish properties of convergent sequences in general-
ized Orlicz spaces (see [8]).

Lemma 2.7. Let G(·) ∈ Φ(Ω). For any sequence {ui}i in LG(·)(Ω), we have
the following properties: If G(·) satisfies (SC), then

||ui||G(·) → 0 (resp. 1;∞)⇐⇒
∫

Ω

G(x, |ui(x)|) dx→ 0 (resp. 1;∞).

Lemma 2.8. Let G(·) ∈ Φ(Ω) and {ui}i be a sequence of measurable functions
ui. Assume the sequence {ui}i converges almost everywhere to a measurable
function u, and is dominated by a function h ∈ LG(·)(Ω). Then all ui as well
as u are in LG(·)(Ω) and the sequence {ui}i converges to u in LG(·)(Ω).

Lemma 2.9. Let G(·) ∈ Φ(Ω) satisfies (SC) and {ui}i be a sequence in
LG(·)(Ω). If ui → u in LG(·)(Ω), then there exist a subsequence {uij}j and

a function h ∈ LG(·)(Ω) such that to uij → u, for a.e. in Ω and for all j,
|uij (x)| ≤ h(x) for a.e. in Ω.
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Proof. Since ui → u in LG(·)(Ω), then by Lemma 2.7, we have∫
Ω

G(x, |ui(x)− u(x)|) dx→ 0.

So, for any δ > 0, let Aδ,i := {x ∈ Ω : |ui(x)−u(x)| > δ}. Using the inequalities
(2.1), (2.2) and the condition (A0), we get

1

c0
min(δg0 , δg

0

)|Aδ,i| ≤
∫
Aδ,i

G(x, δ) dx

≤
∫
Aδ,i

G(x, |ui − u|) dx

≤
∫

Ω

G(x, |ui − u|) dx.

Hence, |Aδ,i| → 0, and ui → u in measure. Therefore, there exists a subse-
quence (uij ) of (ui) which converge to u, for a.e. in Ω.

Then we can define

h :=

∞∑
j=1

|uij − u|

and it can be seen that h ∈ LG(·)(Ω) and h is a dominating function of (uij )
for all j. �

Definition 2.10. We define the generalized Orlicz-Sobolev space by

W 1,G(·)(Ω):={u ∈ LG(·)(Ω) ∩ L1
loc(Ω) : |∇u| ∈ LG(·)(Ω) in the distribution sense},

equipped with the norm

||u||1,G(·) = ||u||G(·) + ||∇u||G(·).

Definition 2.11. W
1,G(·)
0 (Ω) is the closure of C∞0 (Ω) in W 1,G(·)(Ω).

Next, we recall the norm version of the Poincare inequality, which will be
investigated in this work (see [8]).

Theorem 2.12. Let Ω be a bounded set of RN and G(·) ∈ Φ(Ω) satisfy (SC),

(A0) and (A1). For every u ∈W 1,G(·)
0 (Ω), we have

||u||G(·) ≤ C||∇u||G(·).

In particular, ||∇u||G(·) is a norm on W
1,G(·)
0 (Ω) and it is equivalent to the

norm ||u||1,G(·).

The following compact embedding theorem for Musielak-Sobolev spaces is
given by P. Hasto [8].

Theorem 2.13. Let G(·) ∈ Φ(RN ) satisfy (SC), (A0) and (A1) and let Ω be
bounded. Then

W
1,G(·)
0 (Ω) ↪→↪→ LG(·)(Ω).
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3. Eigenvalue problems for the G(·)-Laplacian

3.1. Lusternik-Schnirelmann principle (L-S principle)

We recall here a version of the Lusternik-Schnirelmann principle, which
Browder discussed in [4] and Zeidler in [14,15].

Theorem 3.1. Let X be a real reflexive Banach space. If A,B are two func-
tionals on X satisfying the following properties:

(LS1): A,B : X → R are even functionals and that A,B ∈ C1(X,R) with
A(0) = B(0) = 0.

(LS2): A′ is strongly continuous (i.e., ui ⇀ u in X implies A′(ui)→ A′(u))
and,

〈A′(u), u〉 = 0, u ∈ coSB implies A(u) = 0,

A(u) = 0, u ∈ coSB implies u = 0,

where coSB is the closed convex hull of SB := {u ∈ X, B(u) = 1}.
(LS3): B′ is continuous, bounded and satisfies (S0), i.e., as i→∞,

ui ⇀ u, B′(ui) ⇀ v, 〈B′(ui), ui〉 → 〈v, u〉 implies ui → u.

(LS4): The level set SB is bounded and u 6≡ 0 implies

〈B′(u), u〉 > 0, lim
t→∞

B(tu) =∞, inf
u∈SB

〈B′(u), u〉 > 0.

Then the eigenvalue problem

(3.1) A′(u) = µB′(u), u ∈ SB , µ ∈ R,
admits a sequence of eigenpairs {ui, µi} such that ui ⇀ u, µ → 0 as i → ∞
and µi 6= 0 for all i.

3.2. Application of L-S principle in W
1,G(·)
0 (Ω)

In the sequel, letG(·) ∈ Φ(RN ) satisfy (SC), (A0), (A1), G(x, ·) ∈ C1([0,∞))
for every x ∈ Ω and C a generic constant which may change from line to line.
We consider the following eigenvalue problem

(3.2)

−div

(
g(x, |∇u|)
|∇u|

∇u
)

= λ

(
g(x, |u|)
|u|

u

)
in Ω,

u = 0 on ∂Ω,

where g(x, ·) is the derivative of G(x, ·). The existence of a weak solution to
the Dirichlet-Sobolev problem associated of (3.2) has been studied in [3].

Definition 3.2. Let λ ∈ R and u ∈ W 1,G(·)
0 (Ω). (u, λ) is called a solution of

the problem (3.2) if

(3.3)

∫
Ω

g(x, |∇u|)
|∇u|

∇u · ∇v dx = λ

∫
Ω

g(x, |u|)
|u|

uv dx, ∀v ∈W 1,G(·)
0 (Ω).

If (u, λ) is a solution of the problem (3.2) and u 6≡ 0, as usual, we call λ and u
an eigenvalue and an eigenfunction corresponding to λ of (3.2), respectively.
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In what follows we use the previous version of the L-S principle in order
to prove the existence of a sequence of eigenvalues for problem (3.2). For this

reason, we define on X = W
1,G(·)
0 (Ω) the functionals

A(u) :=

∫
Ω

G(x, |u|) dx,(3.4)

B(u) :=

∫
Ω

G(x, |∇u|) dx.(3.5)

Lemma 3.3. Let A and B be defined in (3.4), (3.5). Then A and B satisfies
(LS1).

Proof. Let G(·) ∈ Φ(RN ). By definition of a generalized Φ-function, we have
G(x, 0) = 0 which implies A(0) = B(0) = 0. The C1-smooth regularity of
the functionals A and B follows by computing the Gateaux derivatives of A

and B at u ∈ W 1,G(·)
0 (Ω) in the direction v ∈ W 1,G(·)

0 (Ω). Precisely, for every

u, v ∈W 1,G(·)
0 (Ω), we have

〈A′(u), v〉 =

∫
Ω

g(x, |u|)
|u|

uv dx,(3.6)

〈B′(u), v〉 =

∫
Ω

g(x, |∇u|)
|∇u|

∇u · ∇v dx.(3.7)

Then A and B satisfies (LS1). �

Lemma 3.4. Let A be defined in (3.4). Then A′ satisfies (LS2).

Proof. Let u ∈W 1,G(·)
0 (Ω), by the condition (SC), we have

A(u) =

∫
Ω

G(x, |u|) dx ≤ 1

g0 + 1

∫
Ω

g(x, |u|)|u|dx ≤ 〈A′(u), u〉.

Then, if 〈A′(u), u〉 = 0 implies A(u) = 0.

Next, we assume A(u) = 0. By Proposition 2.2.7 in [8], there exists G̃(·) ∈
Φ(Ω) with G̃(·) ≈ G(·) which is a strictly increasing. So, we have

0 ≤
∫

Ω

G̃(x, |u|) dx ≤ C
∫

Ω

G(x, |u|) dx = 0 implies u = 0.

To end the proof of Lemma 3.4, it remains for us to prove that A′ is strongly

continuous. Let ui ⇀ u in W
1,G(·)
0 (Ω), we need to show that

A′(ui) −→ A(u) in W
1,G(·)
0 (Ω)∗.

For every v ∈W 1,G(·)
0 (Ω), using the Holder inequality, we get∣∣∣∣∫

Ω

g(x, |ui|)
|ui|

uiv dx−
∫

Ω

g(x, |u|)
|u|

uv dx

∣∣∣∣(3.8)

≤
∫

Ω

∣∣∣∣g(x, |ui|)
|ui|

ui −
g(x, |u|)
|u|

u

∣∣∣∣ |v|dx
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≤ 2

∣∣∣∣∣∣∣∣g(x, |ui|)
|ui|

ui −
g(x, |u|)
|u|

u

∣∣∣∣∣∣∣∣
G∗(·)

||v||G(·).

Since ui ⇀ u in W
1,G(·)
0 (Ω), then by the compact embedding Theorem 2.13, we

have ui → u in LG(·)(Ω). So, using the reverse dominate convergence theorem,
Lemma 2.9, there are a subsequence {uij}j and a function h ∈ LG(·)(Ω) such
that uij → u for a.e. in Ω and |uij | ≤ h.

As the function t→ g(x, t) is continuous and increasing, we have

g(x, |uij |)
|uij |

uij −→
g(x, |u|)
|u|

u for a.e. in Ω and
g(x, |uij |)
|uij |

uij ≤
g(x, |h|)
|h|

h.

Note that g(x,|h|)
|h| h ∈ LG∗(·)(Ω). Indeed, by the Young equality and the condi-

tion (SC), we have∫
Ω

G∗(x,

∣∣∣∣g(x, |h|)
|h|

h

∣∣∣∣) dx =

∫
Ω

G∗(x, g(x, |h|)) dx

=

∫
Ω

g(x, |h|)|h| −G(x, |h|) dx

≤ g0

∫
Ω

G(x, |h|) dx

<∞.
Then, by the dominate convergence theorem, Lemma 2.8, we have

g(x, |uij |)
|uij |

uij −→
g(x, |u|)
|u|

u in LG
∗(·)(Ω).

Hence, by inequality (3.8), we have∫
Ω

g(x, |uij |)
|uij |

uijv dx −→
∫

Ω

g(x, |u|)
|u|

uv dx.

Since the weak limit is independent of the choice of the subsequence, it follows
that ∫

Ω

g(x, |ui|)
|ui|

uiv dx −→
∫

Ω

g(x, |u|)
|u|

uv dx.

Therefore A′(ui)→ A(u) in W
1,G(·)
0 (Ω)∗. �

Inspired by the proof of Theorem 1.7 of Lieberman [10], we have:

Lemma 3.5. Let B be defined in (3.5). Then B′ satisfies (LS3).

Proof. Using the Hölder inequality, we have

||B′||(
W

1,G(·)
0 (Ω)

)∗ = sup{〈B′(u), v〉; ||v||1,G(·) ≤ 1}(3.9)

≤ sup

∣∣∣∣∫
Ω

g(x, |∇u|)
|∇u|

∇u · ∇v dx

∣∣∣∣
≤ 2||g(x, |∇u|)||G∗(·)||v||1,G(·).



DIRICHLET EIGENVALUE PROBLEMS UNDER MUSIELAK-ORLICZ GROWTH 1147

Using the equivalent between Luxembourg norm and Orlicz norm, and the
Young inequality, we have

||g(x, |∇u|)||G∗(·) ≤ ||g(x, |∇u|)||0G∗(·) ≤ 1 +

∫
Ω

G∗(x, g(x, |∇u|) dx.

Then, by the Young equality and the condition (SC), we obtain

||g(x, |∇u|)||G∗(·) ≤ g0

∫
Ω

G(x, |∇u|) dx.

So, by the inequality (3.9), we get

||B′||
W

1,G(·)
0 (Ω)∗

≤ C
(
g0

∫
Ω

G(x, |∇u|) dxdx+ 1

)
||v||1,G(·).

Hence B′ is bounded. Moreover, a similar argument to the one we used to
prove (LS2), we get the continuity of B′.

Complete the proof of Lemma 3.5, that is, prove that B satisfies condition

(S0). Let {ui}i be a sequence in W
1,G(·)
0 (Ω) such that

ui ⇀ u , B′(ui) ⇀ v and 〈B′(ui), ui〉 → 〈v, u〉

for some v ∈W 1,G(·)
0 (Ω)∗ and u ∈W 1,G(·)

0 (Ω). Then, we have

〈B′(ui)−B′(u), ui − u〉(3.10)

= 〈B′(ui), ui〉 − 〈B′(ui), u〉 − 〈B′(u), ui − u〉 → 0.

On the other hand, from the condition (SC) and Cauchy-Schwarz inequality,
we have for θt = tu+ (1− t)ui, t ∈ (0, 1)(

g(x, |∇u|)
|∇u|

∇u− g(x, |∇ui|)
|∇ui|

∇ui
)
· (∇u−∇ui)

=

(∫ 1

0

∂

∂t

(
g(x, |∇θt|)
|∇θt|

∇θt
)

dt

)
· (∇u−∇ui)

= |∇u−∇ui|2
∫ 1

0

g(x, |∇θt|)
|∇θt|

dt

+

∫ 1

0

g(x, |∇θt|)
(
|∇θt|g′(x, |∇θt|)
g(x, |∇θt|)

− 1

)
(∇θt · (∇u−∇ui))2

|∇θt|3
dt

≥ min(1, g0)|∇u−∇ui|2
∫ 1

0

g(x, |∇θt|)
|∇θt|

dt.

Which implies

〈B′(ui)−B′(u), ui − u〉 ≥ min(1, g0)

∫
Ω

∫ 1

0

g(x, |∇θt|)
|∇θt|

|∇u−∇ui|2 dtdx.
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Now we write S1 = {x ∈ Ω, |∇u − ∇ui| ≤ 2|∇u|} and S2 = {x ∈ Ω, |∇u −
∇ui| > 2|∇u|}. Then S1 ∪ S2 = Ω and

1

2
|∇u| ≤ |∇θt| ≤ 3|∇u| on S1 for t ≥ 3

4
,

1

4
|∇u−∇ui| ≤ |∇θt| ≤ 3|∇u−∇ui| on S2 for t ≤ 1

4
.

Therefore

〈B′(ui)−B′(u), ui − u〉(3.11)

≥ C

(∫
S1

g(x, |∇u|)
|∇u|

|∇u−∇ui|2 dx+

∫
S2

G(x, |∇u−∇ui|) dx

)
.

Hence

(3.12)

∫
S2

G(x, |∇u−∇ui|) dx ≤ C〈B′(ui)−B′(u), ui − u〉.

To estimate the integrals over S1, using the condition (SC), t → g(x, t) is a
nondecreasing function and the Hölder inequality in L2(S1), we have∫

S1

G(x, |∇u−∇ui|) dx

≤ C

∫
S1

g(x, |∇u−∇ui|)|∇u−∇ui|dx

≤ C

∫
S1

(
g(x, |∇u|)
|∇u|

|∇u|
) 1

2

|∇u−∇ui| (g(x, |∇u−∇ui|))
1
2 |dx

≤ C

(∫
S1

g(x, |∇u|)
|∇u|

|∇u−∇ui|2 dx

) 1
2
(∫

S1

g(x, |∇u|)|∇u|dx
) 1

2

≤ C

(∫
S1

g(x, |∇u|)
|∇u|

|∇u−∇ui|2 dx

) 1
2
(∫

S1

G(x, |∇u|) dx

) 1
2

.

Hence, using the inequality (3.11), we have∫
S1

G(|∇u−∇ui|) dx(3.13)

≤ C (〈B′(ui)−B′(u), ui − u〉)
1
2

(∫
Ω

G(x, |∇u|) dx

) 1
2

.

Collecting the inequalities (3.11), (3.12), (3.13), we have∫
Ω

G(|∇u−∇ui|) dx

≤ C

(
(〈B′(ui)−B′(u), ui − u〉)

1
2

(∫
Ω

G(|∇u|) +G(x, |u|) dx

) 1
2
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+ 〈B′(ui)−B′(u), ui − u〉
)
.

Therefore, by the inequality (3.10), Theorem 2.12 and Lemma 2.7, we have

ui → u in W
1,G(·)
0 (Ω). �

Lemma 3.6. Let B be defined in (3.5). Then B and B′ satisfies (LS4).

Proof. Let u 6= 0, by the inequalities (2.1) and (2.2), for all t ∈ R+ we have

B(tu) =

∫
Ω

G(x, |∇tu|) dx ≤ max(tg
0+1, tg0+1)

∫
Ω

G(x, |∇u|) dx.

Then limt→+∞B(tu) = +∞.
Next, by the condition (SC) and Proposition 2.2.7 in [8], there exists G̃(·) ∈

Φ(Ω) with G̃(·) ≈ G(·) which is a strictly increasing. Then, we have

〈B′(u), u〉 =

∫
Ω

g(x, |∇u|)|∇u|dx

≥ (g0 + 1)

∫
Ω

G(x, |∇u|) dx

≥ C
∫

Ω

G̃(x, |∇u|) dx

≥ 0.

Note that, the last inequality result from the fact if u ∈ W 1,G(·)
0 and ∇u = 0

then u = 0.
So, if u ∈ SB , then, by the previous inequality, we have 〈B′(u), u〉 ≥ g0 + 1.
Therefore B and B′ satisfies the hypothesis (LS4). �

Theorem 3.7. Let G(·) ∈ Φ(RN ) satisfy (SC), (A0) and (A1). Let A and B
be the two functionals defined in (3.4), (3.5). Then there exists a nondecreasing
sequence of nonnegative eigenvalues {λi}i of (3.2) such that λi →∞ as i→∞.

Proof. By Lemmas 3.3-3.6 combined with Theorem 3.1, there exists a nonneg-
ative nonincreasing sequence {µ}i such that µi → 0 as i → ∞ and each µi is

an eigenvalue of A′(u) = µB′(u) which means, for every v ∈ W 1,G(·)
0 (Ω), we

have ∫
Ω

g(x, |u|)
|u|

uv dx = µ

∫
Ω

g(x, |∇u|)
|∇u|

∇u · ∇v dx.

Which is equivalent∫
Ω

g(x, |∇u|)
|∇u|

∇u · ∇v dx =
1

µ

∫
Ω

g(x, |u|)
|u|

uv dx.

Then λi := 1
µi
→ ∞ as i → ∞ is a nondecreasing sequence of nonnegative

eigenvalues of (3.2). �
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[12] V. D. Rădulescu and S. Saiedinezhad, A nonlinear eigenvalue problem with p(x)-growth

and generalized Robin boundary value condition, Commun. Pure Appl. Anal. 17 (2018),
no. 1, 39–52.

[13] M. Tienari, Lusternik-Schnirelmann theorem for the generalized Laplacian, J. Differen-

tial Equations 161 (2000), no. 1, 174–190. https://doi.org/10.1006/jdeq.2000.3712
[14] E. Zeidler, The Lusternik-Schnirelmann theory for indefinite and not necessarily odd

nonlinear operators and its applications, Nonlinear Anal. 4 (1980), no. 3, 451–489.

https://doi.org/10.1016/0362-546X(80)90085-1

[15] E. Zeidler, Nonlinear Functional Analysis and Its Applications. III, translated from the

German by Leo F. Boron, Springer-Verlag, New York, 1985. https://doi.org/10.1007/

978-1-4612-5020-3

Allami Benyaiche

Ibn Tofail University

Department of Mathematics
B.P: 133
Kenitra 14000, Morocco

Email address: allami.benyaiche@uit.ac.ma

https://doi.org/10.1007/BF01419576
https://doi.org/10.1007/s10231-018-0801-5
https://doi.org/10.1007/s11117-020-00789-z
https://doi.org/10.1007/s11117-020-00789-z
https://doi.org/10.1016/j.jmaa.2003.11.020
https://doi.org/10.1016/j.jmaa.2003.11.020
https://doi.org/10.1080/03605308708820534
https://doi.org/10.1007/978-3-030-15100-3
https://doi.org/10.1007/978-3-030-15100-3
https://doi.org/10.1016/j.na.2005.05.056
https://doi.org/10.1080/03605309108820761
https://doi.org/10.1007/BFb0072210
https://doi.org/10.1006/jdeq.2000.3712
https://doi.org/10.1016/0362-546X(80)90085-1
https://doi.org/10.1007/978-1-4612-5020-3
https://doi.org/10.1007/978-1-4612-5020-3


DIRICHLET EIGENVALUE PROBLEMS UNDER MUSIELAK-ORLICZ GROWTH 1151

Ismail Khlifi

Ibn Tofail University

Department of Mathematics
B.P: 133

Kenitra 14000, Morocco
Email address: is.khlifi@gmail.com


