과제정보
This work was supported by the Korea Agency for Infrastructure Technology Advancement (KAIA) grant funded by the Ministry of Land Infrastructure and Transport (Grant 22CTAP-C164093-02). The authors appreciate the supports.
참고문헌
- Abdel-Qader, I., Abudayyeh, O. and Kelly, M.E. (2003), "Analysis of edge-detection techniques for crack identification in bridges", J. Comput. Civil Eng., 17(4), 255-263. https://doi.org/10.1061/~ASCE!0887-3801~2003!17:4~255!
- Adhikari, R., Moselhi, O. and Bagchi, A. (2014), "Image-based retrieval of concrete crack properties for bridge inspection", Automat. Constr., 39, 180-194. https://doi.org/10.1016/j.autcon.2013.06.011
- Ahmad, A.R., Osman, M.K., Ahmad, K.A., Anuar, M.A. and Yusof, N.A.M. (2020), "Image segmentation for pavement crack detection system", Proceedings of the 10th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), Penang, Malaysia, August, pp. 153-157. https://doi.org/10.1109/ICCSCE50387.2020.9204935
- Biggs, D.S. and Andrews, M. (1997), "Acceleration of iterative image restoration algorithms", Appl. Optics, 36(8), 1766-1775. https://doi.org/10.1364/AO.36.001766
- Canny, J. (1986), "A computational approach to edge detection", IEEE Transact. Pattern Anal. Mach. Intell., (6), 679-698. https://doi.org/10.1109/TPAMI.1986.4767851
- Cha, Y.J., Choi, W. and Buyukozturk, O. (2017), "Deep learningbased crack damage detection using convolutional neural networks", Comput.-Aided Civil Infrastr. Eng., 32(5), 361-378. https://doi.org/10.1111/mice.12263
- Chang, P.C., Flatau, A. and Liu, S.C. (2003), "Health monitoring of civil infrastructure", Struct. Health Monitor., 2(3), 257-267. https://doi.org/10.1177/147592170303616
- Deng, G. and Cahill, L.W. (1993), "An adaptive Gaussian filter for noise reduction and edge detection", Proceedings of IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference, San Francisco, CA, USA, October-November, pp. 1615-1619. https://doi.org/10.1109/NSSMIC.1993.373563
- Ding, K., Ma, K., Wang, S. and Simoncelli, E.P. (2020), "Image quality assessment: Unifying structure and texture similarity", IEEE Transact. Pattern Anal. Mach. Intell., 44(5), 2567-2581. https://doi.org/10.1109/TPAMI.2020.3045810
- Flah, M., Suleiman, A.R. and Nehdi, M.L. (2020), "Classification and quantification of cracks in concrete structures using deep learning image-based techniques", Cement Concrete Compos., 114, 103781. https://doi.org/10.1016/j.cemconcomp.2020.103781
- Han, L., Tian, Y. and Qi, Q. (2020), "Research on edge detection algorithm based on improved sobel operator", Proceedings of 2019 International Conference on Computer Science Communication and Network Security (CSCNS2019), Vol. 309, p. 03031. https://doi.org/10.1051/matecconf/202030903031
- Hoang, N.D. (2018), "Detection of surface crack in building structures using image processing technique with an improved Otsu method for image thresholding", Adv. Civil Eng. https://doi.org/10.1155/2018/3924120
- Hough, P.V. (1962), Method and means for recognizing complex patterns; Google Patents.
- Hsieh, Y.A. and Tsai, Y.J. (2020), "Machine learning for crack detection: Review and model performance comparison", J. Comput. Civil Eng., 34(5), 04020038. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000918
- Jahanshahi, M.R., Masri, S.F. and Sukhatme, G.S. (2011), "Multiimage stitching and scene reconstruction for evaluating defect evolution in structures", Struct. Health Monitor., 10(6), 643-657. https://doi.org/10.1177/1475921710395809
- Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S. and Darrell, T. (2014), "Caffe: Convolutional architecture for fast feature embedding", Proceedings of the 22nd ACM International Conference on Multimedia, Orlando, FL, USA, November, pp. 675-678. https://doi.org/10.1145/2647868.2654889
- Jung, H.J., Lee, J.H., Yoon, S. and Kim, I.H. (2019), "Bridge Inspection and condition assessment using Unmanned Aerial Vehicles (UAVs): Major challenges and solutions from a practical perspective", Smart Struct. Syst., Int. J., 24(5), 669-681. https://doi.org/10.12989/sss.2019.24.5.669
- Kalchbrenner, N., Grefenstette, E. and Blunsom, P. (2014), "A convolutional neural network for modelling sentences", arXiv preprint arXiv:1404.2188. https://doi.org/10.48550/arXiv.1404.2188
- Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012), "Imagenet classification with deep convolutional neural networks", Commun. ACM, 60(6), 84-90. https://doi.org/10.1145/3065386
- Kroner, S. and Carbo, M.T.D. (2013), "Determination of minimum pixel resolution for shape analysis: Proposal of a new data validation method for computerized images", Powder Techonol., 245, 297-313. https://doi.org/10.1016/j.powtec.2013.04.048
- LeCun, Y., Bengio, Y. and Hinton, G (2015), "Deep learning", nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539
- Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z. and Tu, Z (2015), "Deeply-supervised nets", Artif. Intell. Statist., 562-570.
- Lee, J.H., Yoon, S., Kim, B., Gwon, G.H., Kim, I.H. and Jung, H.J. (2021), "A new image-quality evaluating and enhancing methodology for bridge inspection using an unmanned aerial vehicle", Smart Struct. Syst., Int. J., 27(2), 209-226. https://doi.org/10.12989/sss.2021.27.2.209
- Li, Z., Huang, M., Ji, P., Zhu, H. and Zhang, Q. (2022), "One-step deep learning-based method for pixel-level detection of fine cracks in steel girder images", Smart Struct. Syst., Int. J., 29(1), 153-166. https://doi.org/10.12989/sss.2022.29.1.153
- Liu, Y. and Yeoh, J.K. (2021), "Automated crack pattern recognition from images for condition assessment of concrete structures", Automat. Constr., 128, 103765. https://doi.org/10.1016/j.autcon.2021.103765
- Liu, Z.Y., Xie, C.I., Li, J.J., Sang, Y. and Wu, S. (2020), "Canny Edge Detection Algorithm Based on Improved Sequential Statistical Filter", Proceedings of the 39th Chinese Control Conference (CCC), Shenyang, China, July, pp. 3245-3251.
- Long, J., Shelhamer, E. and Darrell, T. (2015), "Fully convolutional networks for semantic segmentation", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, June, pp. 3431-3440.
- Maguire, M., Dorafshan, S. and Thomas, R.J. (2018), "SDNET2018: A concrete crack image dataset for machine learning applications", Utah State University, UT, USA. https://doi.org/10.15142/T3TD19
- Maini, R. and Aggarwal, H (2009), "Study and comparison of various image edge detection techniques", Int. J. Image Porcess. (IJIP), 3(1), 1-11.
- MATLAB (2021), Version 9.10.0.1649659 (R2021a), The MathWorks Inc., Natick, MA, USA.
- Milan, S., Vaclav, H. and Roger, B. (1998), "Image processing, analysis, and machine", Vision 2nd Ed Brooks Cole.
- Moore, M., Phares, B.M., Graybeal, B., Rolander, D., Washer, G. and Wiss, J. (2001), "Reliability of visual inspection for highway bridges, volume I", Reliability of visual inspection for highway bridges; Technical Report #FHWA-RD-01-020, Federal Highway Administration, Washington DC, USA.
- Narazaki, Y., Hoskere, V., Hoang, T.A., Fujino, Y., Sakurai, A. and Spencer Jr, B.F. (2020), "Vision-based automated bridge component recognition with high-level scene consistency", Comput.-Aided Civil Infrastr. Eng., 35(5), 465-482. https://doi.org/10.1111/mice.12505
- Nishikawa, T., Yoshida, J., Sugiyama, T. and Fujino, Y. (2012), "Concrete crack detection by multiple sequential image filtering", Comput.-Aided Civil Infrastr. Eng., 27(1), 29-47. https://doi.org/10.1111/j.1467-8667.2011.00716.x
- Otsu, N (1979), "A threshold selection method from gray-level histograms", IEEE Transact. Syst. Man Cybernet., 9(1), 62-66. https://doi.org/10.1109/TSMC.1979.4310076
- Parker, J.R. (1991), "Gray level thresholding in badly illuminated images", IEEE Transact. Pattern Anal. Mach. Intell., 13(08), 813-819. https://doi.org/10.1109/34.85672
- Qi, Y., Yuan, C., Kong, Q., Xiong, B. and Li, P. (2021), "A deep learning-based vision enhancement method for UAV assisted visual inspection of concrete cracks", Smart Struct. Syst., Int. J., 27(6), 1031-1040. https://doi.org/10.12989/sss.2021.27.6.1031
- Qiang, S., Guoying, L., Jingqi, M. and Hongmei, Z. (2016), "An edge-detection method based on adaptive canny algorithm and iterative segmentation threshold", Proceedings of the 2nd International Conference on Control Science and Systems Engineering (ICCSSE), Singapore, July, pp. 64-67. https://doi.org/10.1109/CCSSE.2016.7784354
- Shahrokhinasab, E., Hosseinzadeh, N., Monirabbasi, A. and Torkaman, S (2020), "Performance of image-based crack detection systems in concrete structures", J. Soft Comput. Civil Eng., 4(1), 127-139.
- Sobel, I. and Feldman, G. (1968), "A 3x3 isotropic gradient operator for image processing", a talk at the Stanford Artificial Project in, pp. 271-272.
- Souza, D. and Menegalli, F.C. (2011), "Image analysis: Statistical study of particle size distribution and shape characterization", Powder Technol., 214(1), 57-63. https://doi.org/10.1016/j.powtec.2011.07.035
- Spencer Jr, B.F., Hoskere, V. and Narazaki, Y. (2019), "Advances in computer vision-based civil infrastructure inspection and monitoring", Eng., 5(2), 199-222. https://doi.org/10.1016/j.eng.2018.11.030
- Talab, A.M.A., Huang, Z., Xi, F. and HaiMing, L. (2016), "Detection crack in image using Otsu method and multiple filtering in image processing techniques", Optik, 127(3), 1030-1033. https://doi.org/10.1016/j.ijleo.2015.09.147
- Wang, P. and Huang, H. (2010), "Comparison analysis on present image-based crack detection methods in concrete structures." Proceedings of the 3rd International Congress on Image and Signal Processing, Yantai, China, October, Vol. 5, pp. 2530-2533.
- Wang, G. and Xiang, J. (2021), "Railway sleeper crack recognition based on edge detection and CNN", Smart Struct. Syst., Int. J., 28(6), 779-789. https://doi.org/10.12989/sss.2021.28.6.779
- Wang, Y., Zhang, J.Y., Liu, J.X., Zhang, Y., Chen, Z.P., Li, C.G., He, K. and Yan, R.B. (2019), "Research on crack detection algorithm of the concrete bridge based on image processing", Procedia Comput. Sci., 154, 610-616. https://doi.org/10.1016/j.procs.2019.06.096
- Wang, L., Spencer Jr., B.F., Li, J. and Hu, P. (2021), "A fast imagestitching algorithm for characterization of cracks in large-scale structures", Smart Struct. Syst., Int. J., 27(4), 593-605. https://doi.org/10.12989/sss.2021.27.4.593
- Xie, S. and Tu, Z. (2015), "Holistically-nested edge detection", Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, December, pp. 1395-1403.
- Xuan, L. and Hong, Z. (2017), "An improved canny edge detection algorithm", Proceedings of the 8th IEEE International Conference on Software Engineering and Service Science (ICSESS), Tianjin, China, August, pp. 275-278.
- Ye, X.W., Jin, T. and Yun, C.B. (2019), "A review on deep learning-based structural health monitoring of civil infrastructures", Smart Struct. Syst., Int. J., 24(5), 567-585. https://doi.org/10.12989/sss.2019.24.5.567
- Zheng, Z., Zha, B., Yuan, H., Xuchen, Y., Gao, Y. and Zhang, H. (2020), "Adaptive edge detection algorithm based on improved grey prediction model", IEEE Access, 8, 102165-102176. https://doi.org/10.1109/ACCESS.2020.2999071
- Zhu, Z., German, S. and Brilakis, I. (2011), "Visual retrieval of concrete crack properties for automated post-earthquake structural safety evaluation", Automat. Constr., 20(7), 874-883. https://doi.org/10.1016/j.autcon.2011.03.004