과제정보
This work was supported by Science and Technology Program of Guangdong Province (2020B121201013); Natural Science Foundation of Guangdong Province (2021A1515012597); Rural Science and Technology Commissioner Program of Guangdong Province (KTP20200278); Inner Mongolia Science and Technology Innovation Guide project (Integration and demonstration of planting quinoa quad-winged in Ordos).
참고문헌
- Adnan, R.M., Malik, A., Kumar, A., Parmar, K.S. and Kisi, O. (2019), "Pan evaporation modeling by three different neurofuzzy intelligent systems using climatic inputs", Arab. J. Geosci., 12(20), 606. https://doi.org/10.1007/s12517-019-4781-6
- Ahmadi, M.H., Baghban, A., Sadeghzadeh, M., Zamen, M., Mosavi, A., Shamshirband, S., Kumar, R. and Mohammadi- Khanaposhtani, M. (2020), "Evaluation of electrical efficiency of photovoltaic thermal solar collector", Eng. Applicat. Computat. Fluid Mech., 14(1), 545-565. https://doi.org/10.1080/19942060.2020.1734094
- Ali Ghorbani, M., Kazempour, R., Chau, K.W., Shamshirband, S. and Taherei Ghazvinei, P. (2018), "Forecasting pan evaporation with an integrated artificial neural network quantum-behaved particle swarm optimization model: a case study in Talesh, Northern Iran", Eng. Applicat. Computat. Fluid Mech., 12(1), 724-737. https://doi.org/10.1080/19942060.2018.1517052
- Alshammari, B.M. and Guesmi, T. (2020), "New chaotic sunflower optimization algorithm for optimal tuning of power system stabilizers", J. Electr. Eng. Technol., 1-13. https://doi.org/10.1007/s42835-020-00470-1
- Altintasi, C., Aydin, O., Taplamacioglu, M.C. and Salor, O. (2020), "Power system harmonic and interharmonic estimation using Vortex Search Algorithm", Electric Power Syst. Res., 182, 106187. https://doi.org/10.1016/j.epsr.2019.106187
- Ashrafzadeh, A., Malik, A., Jothiprakash, V., Ghorbani, M.A. and Biazar, S.M. (2018), "Estimation of daily pan evaporation using neural networks and meta-heuristic approaches", ISH J. Hydraulic Eng., 26(4), 421-429. https://doi.org/10.1080/09715010.2018.1498754
- Ashrafzadeh, A., Ghorbani, M.A., Biazar, S.M. and Yaseen, Z.M. (2019), "Evaporation process modelling over northern Iran: application of an integrative data-intelligence model with the krill herd optimization algorithm", Hydrol. Sci. J., 64(15), 1843-1856. https://doi.org/10.1080/02626667.2019.1676428
- Band, S.S., Ardabili, S., Mosavi, A., Jun, C., Khoshkam, H. and Moslehpour, M. (2022), "Feasibility of soft computing techniques for estimating the long-term mean monthly wind speed", Energy Reports, 8, 638-648. https://doi.org/10.1016/j.egyr.2021.11.247
- Celik, E. (2020), "Improved stochastic fractal search algorithm and modified cost function for automatic generation control of interconnected electric power systems", Eng. Applicat. Artif. Intell., 88, 103407. https://doi.org/10.1016/j.engappai.2019.103407
- Chen, Y., Lin, H., Cao, R. and Zhang, C. (2021), "Slope stability analysis considering different contributions of shear strength parameters", Int. J. Geomech., 21(3), 04020265. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001937
- Dogan, B. and Olmez, T. (2015), "A new metaheuristic for numerical function optimization: Vortex Search algorithm", Information Sciences, 293, 125-145. https://doi.org/10.1016/j.ins.2014.08.053
- Eray, O., Mert, C. and Kisi, O. (2018), "Comparison of multi-gene genetic programming and dynamic evolving neural-fuzzy inference system in modeling pan evaporation", Hydrology Research, 49(4), 1221-1233. https://doi.org/10.2166/nh.2017.076
- Foong, L.K., Zhao, Y., Bai, C. and Xu, C. (2021), "Efficient metaheuristic-retrofitted techniques for concrete slump simulation", Smart Struct. Syst., Int. J., 27(5), 745-759. https://doi.org/10.12989/SSS.2021.27.5.745
- Ghorbani, M.A., Deo, R.C., Yaseen, Z.M., H Kashani, M. and Mohammadi, B. (2018), "Pan evaporation prediction using a hybrid multilayer perceptron-firefly algorithm (MLP-FFA) model: case study in North Iran", Theoretical and applied climatology, 133(3-4), 1119-1131. https://doi.org/10.1007/s00704-017-2244-0
- Gomes, G.F., da Cunha, S.S. and Ancelotti, A.C. (2019), "A sunflower optimization (SFO) algorithm applied to damage identification on laminated composite plates", Eng. Comput., 35(2), 619-626. https://doi.org/10.1007/s00366-018-0620-8
- Guan, Y., Mohammadi, B., Pham, Q.B., Adarsh, S., Balkhair, K.S., Rahman, K.U., Linh, N.T.T. and Tri, D.Q. (2020), "A novel approach for predicting daily pan evaporation in the coastal regions of Iran using support vector regression coupled with krill herd algorithm model", Theore. Appl. Climatol., 1-19. https://doi.org/10.1007/s00704-020-03283-4
- Guven, A. and Kisi, O. (2011), "Daily pan evaporation modeling using linear genetic programming technique", Irrigation Sci., 29(2), 135-145. https://doi.org/10.1007/s00271-010-0225-5
- Han, Y., Wu, J., Zhai, B., Pan, Y., Huang, G., Wu, L. and Zeng, W. (2019), "Coupling a bat algorithm with xgboost to estimate reference evapotranspiration in the arid and semiarid regions of china", Adv. Meteorol., 2019. https://doi.org/10.1155/2019/9575782
- Keskin, M.E. and Terzi, O. (2006), "Artificial neural network models of daily pan evaporation", J. Hydrol. Eng., 11(1), 65-70. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:1(65)
- Khosravi, K., Daggupati, P., Alami, M.T., Awadh, S.M., Ghareb, M.I., Panahi, M., Pham, B.T., Rezaie, F., Qi, C. and Yaseen, Z.M. (2019), "Meteorological data mining and hybrid dataintelligence models for reference evaporation simulation: A case study in Iraq", Comput. Electron. Agricul., 167, 105041. https://doi.org/10.1016/j.compag.2019.105041
- Kisi, O. (2006), "Daily pan evaporation modelling using a neurofuzzy computing technique", J. Hydrol., 329(3-4), 636-646. https://doi.org/10.1016/j.jhydrol.2006.03.015
- Luat, N.V., Shin, J. and Lee, K. (2020), "Hybrid BART-based models optimized by nature-inspired metaheuristics to predict ultimate axial capacity of CCFST columns", Eng. Comput., 38, 1421-1450. https://doi.org/10.1007/s00366-020-01115-7
- Majhi, B. and Naidu, D. (2021), "Pan evaporation modeling in different agroclimatic zones using functional link artificial neural network", Inform. Process. Agricul., 8(1), 134-147. https://doi.org/10.1016/j.inpa.2020.02.007
- Malik, A., Kumar, A., Kim, S., Kashani, M.H., Karimi, V., Sharafati, A., Ghorbani, M.A., Al-Ansari, N., Salih, S.Q., Yaseen, Z.M. and Chau, K.W. (2020), "Modeling monthly pan evaporation process over the Indian central Himalayas: application of multiple learning artificial intelligence model", Eng. Applicat. Computat. Fluid Mech., 14(1), 323-338. https://doi.org/10.1080/19942060.2020.1715845
- Mehrabi, M. (2021), "Landslide susceptibility zonation using statistical and machine learning approaches in Northern Lecco, Italy", Natural Hazards, 111(1), 901-937. https://doi.org/10.1007/s11069-021-05083-z
- Mehrabi, M. and Moayedi, H. (2021), "Landslide susceptibility mapping using artificial neural network tuned by metaheuristic algorithms", Environ. Earth Sci., 80(24), 1-20. https://doi.org/10.1007/s12665-021-10098-7
- Mehrabi, M., Pradhan, B., Moayedi, H. and Alamri, A. (2020), "Optimizing an adaptive neuro-fuzzy inference system for spatial prediction of landslide susceptibility using four state-ofthe-art metaheuristic techniques", Sensors, 20(6), 1723. https://doi.org/10.3390/s20061723
- Moayedi, H., Mehrabi, M., Kalantar, B., Mu'azu, M.A., Rashid, A.S., Foong, L.K. and Nguyen, H. (2019a), "Novel hybrids of adaptive neuro-fuzzy inference system (ANFIS) with several metaheuristic algorithms for spatial susceptibility assessment of seismic-induced landslide", Geomat. Natural Hazards Risk, 10(1), 1879-1911. https://doi.org/10.1080/19475705.2019.1650126
- Moayedi, H., Mehrabi, M., Mosallanezhad, M., Rashid, A.S.A. and Pradhan, B. (2019b), "Modification of landslide susceptibility mapping using optimized PSO-ANN technique", Eng. Comput., 35(3), 967-984. https://doi.org/10.1007/s00366-018-0644-0
- Moayedi, H., Mehrabi, M., Bui, D.T., Pradhan, B. and Foong, L.K. (2020), "Fuzzy-metaheuristic ensembles for spatial assessment of forest fire susceptibility", J. Environ. Manage., 260, 109867. https://doi.org/10.1016/j.jenvman.2019.109867
- Moayedi, H., Ghareh, S. and Foong, L.K. (2021), "Quick integrative optimizers for minimizing the error of neural computing in pan evaporation modeling", Engineering with Computers, 38(2), 1331-1347. https://doi.org/10.1007/s00366-020-01277-4
- Moazenzadeh, R., Mohammadi, B., Shamshirband, S. and Chau, K.W. (2018), "Coupling a firefly algorithm with support vector regression to predict evaporation in northern Iran", Eng. Applicat. Computat. Fluid Mech., 12(1), 584-597. https://doi.org/10.1080/19942060.2018.1482476
- Mohamadi, S., Ehteram, M. and El-Shafie, A. (2020), "Accuracy enhancement for monthly evaporation predicting model utilizing evolutionary machine learning methods", Int. J. Environ. Sci. Technol., 17(7), 3373-3396. https://doi.org/10.1007/s13762-019-02619-6
- Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M. and Shariati, M. (2014), "An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups", Smart Struct. Syst., Int. J., 14(5), 785-809. http://doi.org/10.12989/sss.2014.14.5.785
- Mohammadhassani, M., Saleh, A., Suhatril, M. and Safa, M. (2015), "Fuzzy modelling approach for shear strength prediction of RC deep beams", Smart Struct. Syst., Int. J., 16(3), 497-519. https://doi.org/10.12989/sss.2015.16.3.497
- Mohammadi, B. and Mehdizadeh, S. (2020), "Modeling daily reference evapotranspiration via a novel approach based on support vector regression coupled with whale optimization algorithm", Agricul. Water Manage., 237, 106145. https://doi.org/10.1016/j.agwat.2020.106145
- Mohammadi, B., Linh, N.T.T., Pham, Q.B., Ahmed, A.N., Vojtekova, J., Guan, Y., Abba, S.I. and El-Shafie, A. (2020), "Adaptive neuro-fuzzy inference system coupled with shuffled frog leaping algorithm for predicting river streamflow time series", Hydrol. Sci. J., 65(10), 1738-1751. https://doi.org/10.1080/02626667.2020.1758703
- More, J.J. (1978), Numerical Analysis, Springer, pp. 105-116. https://doi.org/10.1007/BFb0067700
- Mosavi, A., Faghan, Y., Ghamisi, P., Duan, P., Ardabili, S.F., Salwana, E. and Band, S.S. (2020), "Comprehensive review of deep reinforcement learning methods and applications in economics", Mathematics, 8(10), 1640. https://doi.org/10.3390/math8101640
- Mosbah, H. and El-Hawary, M.E. (2017), "Optimization of neural network parameters by Stochastic Fractal Search for dynamic state estimation under communication failure", Electric Power Syst. Res., 147, 288-301. https://doi.org/10.1016/j.epsr.2017.03.002
- Naganna, S.R., Deka, P.C., Ghorbani, M.A., Biazar, S.M., Al- Ansari, N. and Yaseen, Z.M. (2019), "Dew point temperature estimation: application of artificial intelligence model integrated with nature-inspired optimization algorithms", Water, 11(4), 742. https://doi.org/10.3390/w11040742
- Nehdi, M. and Greenough, T. (2007), "Modeling shear capacity of RC slender beams without stirrups using genetic algorithms", Smart Struct. Syst., Int. J., 3(1), 51-68. https://doi.org/10.12989/sss.2007.3.1.051
- Nehdi, M., El Chabib, H. and Said, A. (2006), "Evaluation of shear capacity of FRP reinforced concrete beams using artificial neural networks", Smart Struct. Syst., Int. J., 2(1), 81-100. https://doi.org/10.12989/sss.2006.2.1.081
- Nguyen, H., Mehrabi, M., Kalantar, B., Moayedi, H. and Abdullahi, M.A.M. (2019), "Potential of hybrid evolutionary approaches for assessment of geo-hazard landslide susceptibility mapping", Geomat. Natural Hazards Risk, 10(1), 1667-1693. https://doi.org/10.1080/19475705.2019.1607782
- Nourani, V., Elkiran, G. and Abdullahi, J. (2019), "Multi-station artificial intelligence based ensemble modeling of reference evapotranspiration using pan evaporation measurements", J. Hydrol., 577, 123958. https://doi.org/10.1016/j.jhydrol.2019.123958
- Qais, M.H., Hasanien, H.M. and Alghuwainem, S. (2019), "Identification of electrical parameters for three-diode photovoltaic model using analytical and sunflower optimization algorithm", Applied Energy, 250, 109-117. https://doi.org/10.1016/j.apenergy.2019.05.013
- Qasem, S.N., Samadianfard, S., Sadri Nahand, H., Mosavi, A., Shamshirband, S. and Chau, K.W. (2019), "Estimating daily dew point temperature using machine learning algorithms", Water, 11(3), 582. https://doi.org/10.3390/w11030582
- Rezaie-Balf, M., Maleki, N., Kim, S., Ashrafian, A., Babaie-Miri, F., Kim, N.W., Chung, I.M. and Alaghmand, S. (2019), "Forecasting daily solar radiation using CEEMDAN decomposition-based MARS model trained by crow search algorithm", Energies, 12(8), 1416. https://doi.org/10.3390/en12081416
- Roy, B., Singh, M.P. and Singh, A. (2019), "A novel approach for rainfall-runoff modelling using a biogeography-based optimization technique", Int. J. River Basin Manage., 19(1), 67-80. https://doi.org/10.1080/15715124.2019.1628035
- Salimi, H. (2015), "Stochastic fractal search: a powerful metaheuristic algorithm", Knowledge-Based Syst., 75, 1-18. https://doi.org/10.1016/j.knosys.2014.07.025
- Sebbar, A., Heddam, S. and Djemili, L. (2019), "Predicting daily Pan evaporation (Epan) from Dam reservoirs in the mediterranean regions of Algeria: OPELM vs OSELM", Environ. Processes, 6(1), 309-319. https://doi.org/10.1007/s40710-019-00353-2
- Sebbar, A., Heddam, S., Kisi, O., Djemili, L. and Houichi, L. (2020), "Comparison of Evolving Connectionist Systems (ECoS) and Neural Networks for Modelling Daily Pan Evaporation from Algerian Dam Reservoirs", Water Resour. Algeria-Part I, 161-179. https://doi.org/10.1007/698_2020_527
- Seifi, A. and Soroush, F. (2020), "Pan evaporation estimation and derivation of explicit optimized equations by novel hybrid metaheuristic ANN based methods in different climates of Iran", Comput. Electron. Agricul., 173, 105418. https://doi.org/10.1016/j.compag.2020.105418
- Seyedashraf, O., Mehrabi, M. and Akhtari, A.A. (2018), "Novel approach for dam break flow modeling using computational intelligence", J. Hydrol., 559, 1028-1038. https://doi.org/10.1016/j.jhydrol.2018.03.001
- Shabani, S., Samadianfard, S., Sattari, M.T., Mosavi, A., Shamshirband, S., Kmet, T. and Varkonyi-Koczy, A.R. (2020), "Modeling pan evaporation using Gaussian process regression K-nearest neighbors random forest and Support Vector machines; comparative analysis", Atmosphere, 11(1), 66. https://doi.org/10.3390/atmos11010066
- Shahbazi, Y., Delavari, E. and Chenaghlou, M.R. (2014), "Predicting the buckling load of smart multilayer columns using soft computing tools", Smart Struct. Syst., Int. J., 13(1), 81-98. http://doi.org/10.12989/sss.2013.13.1.081
- Shaheen, M.A., Hasanien, H.M., Mekhamer, S.F. and Talaat, H.E. (2019), "Optimal power flow of power systems including distributed generation units using sunflower optimization algorithm", IEEE Access, 7, 109289-109300. https://doi.org/10.1109/ACCESS.2019.2933489
- Shiri, J., Zounemat-Kermani, M., Kisi, O. and Mohsenzadeh Karimi, S. (2020), "Comprehensive assessment of 12 soft computing approaches for modelling reference evapotranspiration in humid locations", Meteorol. Applicat., 27(1), e1841. https://doi.org/10.1002/met.1841
- Shirsath, P.B. and Singh, A.K. (2010), "A comparative study of daily pan evaporation estimation using ANN, regression and climate based models", Water Resour. Manage., 24(8), 1571-1581. https://doi.org/10.1007/s11269-009-9514-2
- Singh, A., Mittal, M. and Kumar, A. (2020), "Predictive modeling of pan evaporation using random forest algorithm along with features selection", Proceedings of the 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India, January, pp. 380-384. https://doi.org/10.1109/Confluence47617.2020.9057856
- Tezel, G. and Buyukyildiz, M. (2016), "Monthly evaporation forecasting using artificial neural networks and support vector machines", Theore. Appl. Climatol., 124(1-2), 69-80. https://doi.org/10.1007/s00704-015-1392-3
- Thom, A.S., Thony, J.L. and Vauclin, M. (1981), "On the proper employment of evaporation pans and atmometers in estimating potential transpiration", Quarterly Journal of the Royal Meteorological Society, 107(453), 711-736. https://doi.org/10.1002/qj.49710745316
- Tran, T.T., Truong, K.H. and Vo, D.N. (2020), "Stochastic fractal search algorithm for reconfiguration of distribution networks with distributed generations", Ain Shams Eng. J., 11(2), 389-407. https://doi.org/10.1016/j.asej.2019.08.015
- Wang, L., Kisi, O., Zounemat-Kermani, M. and Gan, Y. (2016), "Comparison of six different soft computing methods in modeling evaporation in different climates", Hydrol. Earth Syst. Sci. Discuss., 1-51. https://doi.org/10.5194/hess-2016-247
- Wang, L., Kisi, O., Zounemat-Kermani, M. and Li, H. (2017), "Pan evaporation modeling using six different heuristic computing methods in different climates of China", J. Hydrol., 544, 407-427. https://doi.org/10.1016/j.jhydrol.2016.11.059
- Wang, H., Yan, H., Zeng, W., Lei, G., Ao, C. and Zha, Y. (2020), "A novel nonlinear Arps decline model with salp swarm algorithm for predicting pan evaporation in the arid and semiarid regions of China", J. Hydrol., 582, 124545. https://doi.org/10.1016/j.jhydrol.2020.124545
- Wu, L., Huang, G., Fan, J., Ma, X., Zhou, H. and Zeng, W. (2020), "Hybrid extreme learning machine with meta-heuristic algorithms for monthly pan evaporation prediction", Comput. Electron. Agricul., 168, 105115. https://doi.org/10.1016/j.compag.2019.105115
- Xie, S.J., Lin, H., Chen, Y.F. and Wang, Y.X. (2021), "A new nonlinear empirical strength criterion for rocks under conventional triaxial compression", J. Central South Univ., 28(5), 1448-1458. https://doi.org/10.1007/s11771-021-4708-8
- Yang, F., Moayedi, H. and Mosavi, A. (2021), "Predicting the degree of dissolved oxygen using three types of multi-layer perceptron-based artificial neural networks", Sustainability, 13(17), 9898. https://doi.org/10.3390/su13179898
- Yaseen, Z.M., Ghareb, M.I., Ebtehaj, I., Bonakdari, H., Siddique, R., Heddam, S., Yusif, A.A. and Deo, R. (2018), "Rainfall pattern forecasting using novel hybrid intelligent model based ANFIS-FFA", Water Resour. Manage., 32(1), 105-122. https://doi.org/10.1007/s11269-017-1797-0
- Zhang, G., Band, S.S., Ardabili, S., Chau, K.W. and Mosavi, A. (2022), "Integration of neural network and fuzzy logic decision making compared with bilayered neural network in the simulation of daily dew point temperature", Eng. Applicat. Computat. Fluid Mech., 16(1), 713-723. https://doi.org/10.1080/19942060.2022.2043187
- Zhao, Y. and Foong, L.K. (2022), "Predicting Electrical Power Output of Combined Cycle Power Plants Using a Novel Artificial Neural Network Optimized by Electrostatic Discharge Algorithm", Measurement, 111405. https://doi.org/10.1016/j.measurement.2022.111405
- Zhao, Y. and Wang, Z. (2022), "Subset simulation with adaptable intermediate failure probability for robust reliability analysis: an unsupervised learning-based approach", Struct. Multidiscipl. Optimiz., 65(6), 1-22. https://doi.org/10.1007/s00158-022-03260-7
- Zhao, Y., Zhong, X. and Foong, L.K. (2021), "Predicting the splitting tensile strength of concrete using an equilibrium optimization model", Steel Compos. Struct., Int. J., 39(1), 81-93. https://doi.org/10.12989/scs.2021.39.1.081
- Zhao, Y., Hu, H., Song, C. and Wang, Z. (2022), "Predicting compressive strength of manufactured-sand concrete using conventional and metaheuristic-tuned artificial neural network", Measurement, 194, 110993. https://doi.org/10.1016/j.measurement.2022.110993
- Zheng, S., Lyu, Z. and Foong, L.K. (2020), "Early prediction of cooling load in energy-efficient buildings through novel optimizer of shuffled complex evolution", Eng. Comput., 38(Suppl 1), 105-119. https://doi.org/10.1007/s00366-020-01140-6
- Zuo, H., Chen, B., Wang, S., Guo, Y., Zuo, B., Wu, L. and Gao, X. (2016), "Observational study on complementary relationship between pan evaporation and actual evapotranspiration and its variation with pan type", Agricul. Forest Meteorol., 222, 1-9. https://doi.org/10.1016/j.agrformet.2016.03.002.