DOI QR코드

DOI QR Code

Novel integrative soft computing for daily pan evaporation modeling

  • Zhang, Yu (School of Geographic Sciencces and Tourism, Jiaying University) ;
  • Liu, LiLi (Ordos Water Conservancy Development Center) ;
  • Zhu, Yongjun (Paotai Soil Improvement Experimental Station) ;
  • Wang, Peng (College of Hydraulic and Civil Engineering, Xinjiang Agricultural University) ;
  • Foong, Loke Kok (Institute of Research and Development, Duy Tan University)
  • Received : 2020.10.12
  • Accepted : 2022.07.26
  • Published : 2022.10.25

Abstract

Regarding the high significance of correct pan evaporation modeling, this study introduces two novel neuro-metaheuristic approaches to improve the accuracy of prediction for this parameter. Vortex search algorithms (VSA), sunflower optimization (SFO), and stochastic fractal search (SFS) are integrated with a multilayer perceptron neural network to create the VSA-MLPNN, SFO-MLPNN, and SFS-MLPNN hybrids. The climate data of Arcata-Eureka station (operated by the US environmental protection agency) belonging to the years 1986-1989 and the year 1990 are used for training and testing the models, respectively. Trying different configurations revealed that the best performance of the VSA, SFO, and SFS is obtained for the population size of 400, 300, and 100, respectively. The results were compared with a conventionally trained MLPNN to examine the effect of the metaheuristic algorithms. Overall, all four models presented a very reliable simulation. However, the SFS-MLPNN (mean absolute error, MAE = 0.0997 and Pearson correlation coefficient, RP = 0.9957) was the most accurate model, followed by the VSA-MLPNN (MAE = 0.1058 and RP = 0.9945), conventional MLPNN (MAE = 0.1062 and RP = 0.9944), and SFO-MLPNN (MAE = 0.1305 and RP = 0.9914). The findings indicated that employing the VSA and SFS results in improving the accuracy of the neural network in the prediction of pan evaporation. Hence, the suggested models are recommended for future practical applications.

Keywords

Acknowledgement

This work was supported by Science and Technology Program of Guangdong Province (2020B121201013); Natural Science Foundation of Guangdong Province (2021A1515012597); Rural Science and Technology Commissioner Program of Guangdong Province (KTP20200278); Inner Mongolia Science and Technology Innovation Guide project (Integration and demonstration of planting quinoa quad-winged in Ordos).

References

  1. Adnan, R.M., Malik, A., Kumar, A., Parmar, K.S. and Kisi, O. (2019), "Pan evaporation modeling by three different neurofuzzy intelligent systems using climatic inputs", Arab. J. Geosci., 12(20), 606. https://doi.org/10.1007/s12517-019-4781-6
  2. Ahmadi, M.H., Baghban, A., Sadeghzadeh, M., Zamen, M., Mosavi, A., Shamshirband, S., Kumar, R. and Mohammadi- Khanaposhtani, M. (2020), "Evaluation of electrical efficiency of photovoltaic thermal solar collector", Eng. Applicat. Computat. Fluid Mech., 14(1), 545-565. https://doi.org/10.1080/19942060.2020.1734094
  3. Ali Ghorbani, M., Kazempour, R., Chau, K.W., Shamshirband, S. and Taherei Ghazvinei, P. (2018), "Forecasting pan evaporation with an integrated artificial neural network quantum-behaved particle swarm optimization model: a case study in Talesh, Northern Iran", Eng. Applicat. Computat. Fluid Mech., 12(1), 724-737. https://doi.org/10.1080/19942060.2018.1517052
  4. Alshammari, B.M. and Guesmi, T. (2020), "New chaotic sunflower optimization algorithm for optimal tuning of power system stabilizers", J. Electr. Eng. Technol., 1-13. https://doi.org/10.1007/s42835-020-00470-1
  5. Altintasi, C., Aydin, O., Taplamacioglu, M.C. and Salor, O. (2020), "Power system harmonic and interharmonic estimation using Vortex Search Algorithm", Electric Power Syst. Res., 182, 106187. https://doi.org/10.1016/j.epsr.2019.106187
  6. Ashrafzadeh, A., Malik, A., Jothiprakash, V., Ghorbani, M.A. and Biazar, S.M. (2018), "Estimation of daily pan evaporation using neural networks and meta-heuristic approaches", ISH J. Hydraulic Eng., 26(4), 421-429. https://doi.org/10.1080/09715010.2018.1498754
  7. Ashrafzadeh, A., Ghorbani, M.A., Biazar, S.M. and Yaseen, Z.M. (2019), "Evaporation process modelling over northern Iran: application of an integrative data-intelligence model with the krill herd optimization algorithm", Hydrol. Sci. J., 64(15), 1843-1856. https://doi.org/10.1080/02626667.2019.1676428
  8. Band, S.S., Ardabili, S., Mosavi, A., Jun, C., Khoshkam, H. and Moslehpour, M. (2022), "Feasibility of soft computing techniques for estimating the long-term mean monthly wind speed", Energy Reports, 8, 638-648. https://doi.org/10.1016/j.egyr.2021.11.247
  9. Celik, E. (2020), "Improved stochastic fractal search algorithm and modified cost function for automatic generation control of interconnected electric power systems", Eng. Applicat. Artif. Intell., 88, 103407. https://doi.org/10.1016/j.engappai.2019.103407
  10. Chen, Y., Lin, H., Cao, R. and Zhang, C. (2021), "Slope stability analysis considering different contributions of shear strength parameters", Int. J. Geomech., 21(3), 04020265. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001937
  11. Dogan, B. and Olmez, T. (2015), "A new metaheuristic for numerical function optimization: Vortex Search algorithm", Information Sciences, 293, 125-145. https://doi.org/10.1016/j.ins.2014.08.053
  12. Eray, O., Mert, C. and Kisi, O. (2018), "Comparison of multi-gene genetic programming and dynamic evolving neural-fuzzy inference system in modeling pan evaporation", Hydrology Research, 49(4), 1221-1233. https://doi.org/10.2166/nh.2017.076
  13. Foong, L.K., Zhao, Y., Bai, C. and Xu, C. (2021), "Efficient metaheuristic-retrofitted techniques for concrete slump simulation", Smart Struct. Syst., Int. J., 27(5), 745-759. https://doi.org/10.12989/SSS.2021.27.5.745
  14. Ghorbani, M.A., Deo, R.C., Yaseen, Z.M., H Kashani, M. and Mohammadi, B. (2018), "Pan evaporation prediction using a hybrid multilayer perceptron-firefly algorithm (MLP-FFA) model: case study in North Iran", Theoretical and applied climatology, 133(3-4), 1119-1131. https://doi.org/10.1007/s00704-017-2244-0
  15. Gomes, G.F., da Cunha, S.S. and Ancelotti, A.C. (2019), "A sunflower optimization (SFO) algorithm applied to damage identification on laminated composite plates", Eng. Comput., 35(2), 619-626. https://doi.org/10.1007/s00366-018-0620-8
  16. Guan, Y., Mohammadi, B., Pham, Q.B., Adarsh, S., Balkhair, K.S., Rahman, K.U., Linh, N.T.T. and Tri, D.Q. (2020), "A novel approach for predicting daily pan evaporation in the coastal regions of Iran using support vector regression coupled with krill herd algorithm model", Theore. Appl. Climatol., 1-19. https://doi.org/10.1007/s00704-020-03283-4
  17. Guven, A. and Kisi, O. (2011), "Daily pan evaporation modeling using linear genetic programming technique", Irrigation Sci., 29(2), 135-145. https://doi.org/10.1007/s00271-010-0225-5
  18. Han, Y., Wu, J., Zhai, B., Pan, Y., Huang, G., Wu, L. and Zeng, W. (2019), "Coupling a bat algorithm with xgboost to estimate reference evapotranspiration in the arid and semiarid regions of china", Adv. Meteorol., 2019. https://doi.org/10.1155/2019/9575782
  19. Keskin, M.E. and Terzi, O. (2006), "Artificial neural network models of daily pan evaporation", J. Hydrol. Eng., 11(1), 65-70. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:1(65)
  20. Khosravi, K., Daggupati, P., Alami, M.T., Awadh, S.M., Ghareb, M.I., Panahi, M., Pham, B.T., Rezaie, F., Qi, C. and Yaseen, Z.M. (2019), "Meteorological data mining and hybrid dataintelligence models for reference evaporation simulation: A case study in Iraq", Comput. Electron. Agricul., 167, 105041. https://doi.org/10.1016/j.compag.2019.105041
  21. Kisi, O. (2006), "Daily pan evaporation modelling using a neurofuzzy computing technique", J. Hydrol., 329(3-4), 636-646. https://doi.org/10.1016/j.jhydrol.2006.03.015
  22. Luat, N.V., Shin, J. and Lee, K. (2020), "Hybrid BART-based models optimized by nature-inspired metaheuristics to predict ultimate axial capacity of CCFST columns", Eng. Comput., 38, 1421-1450. https://doi.org/10.1007/s00366-020-01115-7
  23. Majhi, B. and Naidu, D. (2021), "Pan evaporation modeling in different agroclimatic zones using functional link artificial neural network", Inform. Process. Agricul., 8(1), 134-147. https://doi.org/10.1016/j.inpa.2020.02.007
  24. Malik, A., Kumar, A., Kim, S., Kashani, M.H., Karimi, V., Sharafati, A., Ghorbani, M.A., Al-Ansari, N., Salih, S.Q., Yaseen, Z.M. and Chau, K.W. (2020), "Modeling monthly pan evaporation process over the Indian central Himalayas: application of multiple learning artificial intelligence model", Eng. Applicat. Computat. Fluid Mech., 14(1), 323-338. https://doi.org/10.1080/19942060.2020.1715845
  25. Mehrabi, M. (2021), "Landslide susceptibility zonation using statistical and machine learning approaches in Northern Lecco, Italy", Natural Hazards, 111(1), 901-937. https://doi.org/10.1007/s11069-021-05083-z
  26. Mehrabi, M. and Moayedi, H. (2021), "Landslide susceptibility mapping using artificial neural network tuned by metaheuristic algorithms", Environ. Earth Sci., 80(24), 1-20. https://doi.org/10.1007/s12665-021-10098-7
  27. Mehrabi, M., Pradhan, B., Moayedi, H. and Alamri, A. (2020), "Optimizing an adaptive neuro-fuzzy inference system for spatial prediction of landslide susceptibility using four state-ofthe-art metaheuristic techniques", Sensors, 20(6), 1723. https://doi.org/10.3390/s20061723
  28. Moayedi, H., Mehrabi, M., Kalantar, B., Mu'azu, M.A., Rashid, A.S., Foong, L.K. and Nguyen, H. (2019a), "Novel hybrids of adaptive neuro-fuzzy inference system (ANFIS) with several metaheuristic algorithms for spatial susceptibility assessment of seismic-induced landslide", Geomat. Natural Hazards Risk, 10(1), 1879-1911. https://doi.org/10.1080/19475705.2019.1650126
  29. Moayedi, H., Mehrabi, M., Mosallanezhad, M., Rashid, A.S.A. and Pradhan, B. (2019b), "Modification of landslide susceptibility mapping using optimized PSO-ANN technique", Eng. Comput., 35(3), 967-984. https://doi.org/10.1007/s00366-018-0644-0
  30. Moayedi, H., Mehrabi, M., Bui, D.T., Pradhan, B. and Foong, L.K. (2020), "Fuzzy-metaheuristic ensembles for spatial assessment of forest fire susceptibility", J. Environ. Manage., 260, 109867. https://doi.org/10.1016/j.jenvman.2019.109867
  31. Moayedi, H., Ghareh, S. and Foong, L.K. (2021), "Quick integrative optimizers for minimizing the error of neural computing in pan evaporation modeling", Engineering with Computers, 38(2), 1331-1347. https://doi.org/10.1007/s00366-020-01277-4
  32. Moazenzadeh, R., Mohammadi, B., Shamshirband, S. and Chau, K.W. (2018), "Coupling a firefly algorithm with support vector regression to predict evaporation in northern Iran", Eng. Applicat. Computat. Fluid Mech., 12(1), 584-597. https://doi.org/10.1080/19942060.2018.1482476
  33. Mohamadi, S., Ehteram, M. and El-Shafie, A. (2020), "Accuracy enhancement for monthly evaporation predicting model utilizing evolutionary machine learning methods", Int. J. Environ. Sci. Technol., 17(7), 3373-3396. https://doi.org/10.1007/s13762-019-02619-6
  34. Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M. and Shariati, M. (2014), "An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups", Smart Struct. Syst., Int. J., 14(5), 785-809. http://doi.org/10.12989/sss.2014.14.5.785
  35. Mohammadhassani, M., Saleh, A., Suhatril, M. and Safa, M. (2015), "Fuzzy modelling approach for shear strength prediction of RC deep beams", Smart Struct. Syst., Int. J., 16(3), 497-519. https://doi.org/10.12989/sss.2015.16.3.497
  36. Mohammadi, B. and Mehdizadeh, S. (2020), "Modeling daily reference evapotranspiration via a novel approach based on support vector regression coupled with whale optimization algorithm", Agricul. Water Manage., 237, 106145. https://doi.org/10.1016/j.agwat.2020.106145
  37. Mohammadi, B., Linh, N.T.T., Pham, Q.B., Ahmed, A.N., Vojtekova, J., Guan, Y., Abba, S.I. and El-Shafie, A. (2020), "Adaptive neuro-fuzzy inference system coupled with shuffled frog leaping algorithm for predicting river streamflow time series", Hydrol. Sci. J., 65(10), 1738-1751. https://doi.org/10.1080/02626667.2020.1758703
  38. More, J.J. (1978), Numerical Analysis, Springer, pp. 105-116. https://doi.org/10.1007/BFb0067700
  39. Mosavi, A., Faghan, Y., Ghamisi, P., Duan, P., Ardabili, S.F., Salwana, E. and Band, S.S. (2020), "Comprehensive review of deep reinforcement learning methods and applications in economics", Mathematics, 8(10), 1640. https://doi.org/10.3390/math8101640
  40. Mosbah, H. and El-Hawary, M.E. (2017), "Optimization of neural network parameters by Stochastic Fractal Search for dynamic state estimation under communication failure", Electric Power Syst. Res., 147, 288-301. https://doi.org/10.1016/j.epsr.2017.03.002
  41. Naganna, S.R., Deka, P.C., Ghorbani, M.A., Biazar, S.M., Al- Ansari, N. and Yaseen, Z.M. (2019), "Dew point temperature estimation: application of artificial intelligence model integrated with nature-inspired optimization algorithms", Water, 11(4), 742. https://doi.org/10.3390/w11040742
  42. Nehdi, M. and Greenough, T. (2007), "Modeling shear capacity of RC slender beams without stirrups using genetic algorithms", Smart Struct. Syst., Int. J., 3(1), 51-68. https://doi.org/10.12989/sss.2007.3.1.051
  43. Nehdi, M., El Chabib, H. and Said, A. (2006), "Evaluation of shear capacity of FRP reinforced concrete beams using artificial neural networks", Smart Struct. Syst., Int. J., 2(1), 81-100. https://doi.org/10.12989/sss.2006.2.1.081
  44. Nguyen, H., Mehrabi, M., Kalantar, B., Moayedi, H. and Abdullahi, M.A.M. (2019), "Potential of hybrid evolutionary approaches for assessment of geo-hazard landslide susceptibility mapping", Geomat. Natural Hazards Risk, 10(1), 1667-1693. https://doi.org/10.1080/19475705.2019.1607782
  45. Nourani, V., Elkiran, G. and Abdullahi, J. (2019), "Multi-station artificial intelligence based ensemble modeling of reference evapotranspiration using pan evaporation measurements", J. Hydrol., 577, 123958. https://doi.org/10.1016/j.jhydrol.2019.123958
  46. Qais, M.H., Hasanien, H.M. and Alghuwainem, S. (2019), "Identification of electrical parameters for three-diode photovoltaic model using analytical and sunflower optimization algorithm", Applied Energy, 250, 109-117. https://doi.org/10.1016/j.apenergy.2019.05.013
  47. Qasem, S.N., Samadianfard, S., Sadri Nahand, H., Mosavi, A., Shamshirband, S. and Chau, K.W. (2019), "Estimating daily dew point temperature using machine learning algorithms", Water, 11(3), 582. https://doi.org/10.3390/w11030582
  48. Rezaie-Balf, M., Maleki, N., Kim, S., Ashrafian, A., Babaie-Miri, F., Kim, N.W., Chung, I.M. and Alaghmand, S. (2019), "Forecasting daily solar radiation using CEEMDAN decomposition-based MARS model trained by crow search algorithm", Energies, 12(8), 1416. https://doi.org/10.3390/en12081416
  49. Roy, B., Singh, M.P. and Singh, A. (2019), "A novel approach for rainfall-runoff modelling using a biogeography-based optimization technique", Int. J. River Basin Manage., 19(1), 67-80. https://doi.org/10.1080/15715124.2019.1628035
  50. Salimi, H. (2015), "Stochastic fractal search: a powerful metaheuristic algorithm", Knowledge-Based Syst., 75, 1-18. https://doi.org/10.1016/j.knosys.2014.07.025
  51. Sebbar, A., Heddam, S. and Djemili, L. (2019), "Predicting daily Pan evaporation (Epan) from Dam reservoirs in the mediterranean regions of Algeria: OPELM vs OSELM", Environ. Processes, 6(1), 309-319. https://doi.org/10.1007/s40710-019-00353-2
  52. Sebbar, A., Heddam, S., Kisi, O., Djemili, L. and Houichi, L. (2020), "Comparison of Evolving Connectionist Systems (ECoS) and Neural Networks for Modelling Daily Pan Evaporation from Algerian Dam Reservoirs", Water Resour. Algeria-Part I, 161-179. https://doi.org/10.1007/698_2020_527
  53. Seifi, A. and Soroush, F. (2020), "Pan evaporation estimation and derivation of explicit optimized equations by novel hybrid metaheuristic ANN based methods in different climates of Iran", Comput. Electron. Agricul., 173, 105418. https://doi.org/10.1016/j.compag.2020.105418
  54. Seyedashraf, O., Mehrabi, M. and Akhtari, A.A. (2018), "Novel approach for dam break flow modeling using computational intelligence", J. Hydrol., 559, 1028-1038. https://doi.org/10.1016/j.jhydrol.2018.03.001
  55. Shabani, S., Samadianfard, S., Sattari, M.T., Mosavi, A., Shamshirband, S., Kmet, T. and Varkonyi-Koczy, A.R. (2020), "Modeling pan evaporation using Gaussian process regression K-nearest neighbors random forest and Support Vector machines; comparative analysis", Atmosphere, 11(1), 66. https://doi.org/10.3390/atmos11010066
  56. Shahbazi, Y., Delavari, E. and Chenaghlou, M.R. (2014), "Predicting the buckling load of smart multilayer columns using soft computing tools", Smart Struct. Syst., Int. J., 13(1), 81-98. http://doi.org/10.12989/sss.2013.13.1.081
  57. Shaheen, M.A., Hasanien, H.M., Mekhamer, S.F. and Talaat, H.E. (2019), "Optimal power flow of power systems including distributed generation units using sunflower optimization algorithm", IEEE Access, 7, 109289-109300. https://doi.org/10.1109/ACCESS.2019.2933489
  58. Shiri, J., Zounemat-Kermani, M., Kisi, O. and Mohsenzadeh Karimi, S. (2020), "Comprehensive assessment of 12 soft computing approaches for modelling reference evapotranspiration in humid locations", Meteorol. Applicat., 27(1), e1841. https://doi.org/10.1002/met.1841
  59. Shirsath, P.B. and Singh, A.K. (2010), "A comparative study of daily pan evaporation estimation using ANN, regression and climate based models", Water Resour. Manage., 24(8), 1571-1581. https://doi.org/10.1007/s11269-009-9514-2
  60. Singh, A., Mittal, M. and Kumar, A. (2020), "Predictive modeling of pan evaporation using random forest algorithm along with features selection", Proceedings of the 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India, January, pp. 380-384. https://doi.org/10.1109/Confluence47617.2020.9057856
  61. Tezel, G. and Buyukyildiz, M. (2016), "Monthly evaporation forecasting using artificial neural networks and support vector machines", Theore. Appl. Climatol., 124(1-2), 69-80. https://doi.org/10.1007/s00704-015-1392-3
  62. Thom, A.S., Thony, J.L. and Vauclin, M. (1981), "On the proper employment of evaporation pans and atmometers in estimating potential transpiration", Quarterly Journal of the Royal Meteorological Society, 107(453), 711-736. https://doi.org/10.1002/qj.49710745316
  63. Tran, T.T., Truong, K.H. and Vo, D.N. (2020), "Stochastic fractal search algorithm for reconfiguration of distribution networks with distributed generations", Ain Shams Eng. J., 11(2), 389-407. https://doi.org/10.1016/j.asej.2019.08.015
  64. Wang, L., Kisi, O., Zounemat-Kermani, M. and Gan, Y. (2016), "Comparison of six different soft computing methods in modeling evaporation in different climates", Hydrol. Earth Syst. Sci. Discuss., 1-51. https://doi.org/10.5194/hess-2016-247
  65. Wang, L., Kisi, O., Zounemat-Kermani, M. and Li, H. (2017), "Pan evaporation modeling using six different heuristic computing methods in different climates of China", J. Hydrol., 544, 407-427. https://doi.org/10.1016/j.jhydrol.2016.11.059
  66. Wang, H., Yan, H., Zeng, W., Lei, G., Ao, C. and Zha, Y. (2020), "A novel nonlinear Arps decline model with salp swarm algorithm for predicting pan evaporation in the arid and semiarid regions of China", J. Hydrol., 582, 124545. https://doi.org/10.1016/j.jhydrol.2020.124545
  67. Wu, L., Huang, G., Fan, J., Ma, X., Zhou, H. and Zeng, W. (2020), "Hybrid extreme learning machine with meta-heuristic algorithms for monthly pan evaporation prediction", Comput. Electron. Agricul., 168, 105115. https://doi.org/10.1016/j.compag.2019.105115
  68. Xie, S.J., Lin, H., Chen, Y.F. and Wang, Y.X. (2021), "A new nonlinear empirical strength criterion for rocks under conventional triaxial compression", J. Central South Univ., 28(5), 1448-1458. https://doi.org/10.1007/s11771-021-4708-8
  69. Yang, F., Moayedi, H. and Mosavi, A. (2021), "Predicting the degree of dissolved oxygen using three types of multi-layer perceptron-based artificial neural networks", Sustainability, 13(17), 9898. https://doi.org/10.3390/su13179898
  70. Yaseen, Z.M., Ghareb, M.I., Ebtehaj, I., Bonakdari, H., Siddique, R., Heddam, S., Yusif, A.A. and Deo, R. (2018), "Rainfall pattern forecasting using novel hybrid intelligent model based ANFIS-FFA", Water Resour. Manage., 32(1), 105-122. https://doi.org/10.1007/s11269-017-1797-0
  71. Zhang, G., Band, S.S., Ardabili, S., Chau, K.W. and Mosavi, A. (2022), "Integration of neural network and fuzzy logic decision making compared with bilayered neural network in the simulation of daily dew point temperature", Eng. Applicat. Computat. Fluid Mech., 16(1), 713-723. https://doi.org/10.1080/19942060.2022.2043187
  72. Zhao, Y. and Foong, L.K. (2022), "Predicting Electrical Power Output of Combined Cycle Power Plants Using a Novel Artificial Neural Network Optimized by Electrostatic Discharge Algorithm", Measurement, 111405. https://doi.org/10.1016/j.measurement.2022.111405
  73. Zhao, Y. and Wang, Z. (2022), "Subset simulation with adaptable intermediate failure probability for robust reliability analysis: an unsupervised learning-based approach", Struct. Multidiscipl. Optimiz., 65(6), 1-22. https://doi.org/10.1007/s00158-022-03260-7
  74. Zhao, Y., Zhong, X. and Foong, L.K. (2021), "Predicting the splitting tensile strength of concrete using an equilibrium optimization model", Steel Compos. Struct., Int. J., 39(1), 81-93. https://doi.org/10.12989/scs.2021.39.1.081
  75. Zhao, Y., Hu, H., Song, C. and Wang, Z. (2022), "Predicting compressive strength of manufactured-sand concrete using conventional and metaheuristic-tuned artificial neural network", Measurement, 194, 110993. https://doi.org/10.1016/j.measurement.2022.110993
  76. Zheng, S., Lyu, Z. and Foong, L.K. (2020), "Early prediction of cooling load in energy-efficient buildings through novel optimizer of shuffled complex evolution", Eng. Comput., 38(Suppl 1), 105-119. https://doi.org/10.1007/s00366-020-01140-6
  77. Zuo, H., Chen, B., Wang, S., Guo, Y., Zuo, B., Wu, L. and Gao, X. (2016), "Observational study on complementary relationship between pan evaporation and actual evapotranspiration and its variation with pan type", Agricul. Forest Meteorol., 222, 1-9. https://doi.org/10.1016/j.agrformet.2016.03.002.