References
- Allan, A.L. (1988), "The principles of theodolite intersection systems", Survey Review, 29(227), 226-234. https://doi.org/10.1179/sre.1988.29.227.226
- Alsadik, B. (2019), "Chapter 4 - Observation Models and Least Squares Adjustment", In: Adjustment Models in 3D Geomatics and Computational Geophysics, pp. 89-151. https://doi.org/10.1016/b978-0-12-817588-0.00004-0
- Breuer, P., Chmielewski, T., Gorski, P., Konopka, E. and Tarczynski, L. (2015), "Monitoring horizontal displacements in a vertical profile of a tall industrial chimney using Global Positioning System technology for detecting dynamic characteristics", Struct. Control Health Monitor., 22(7), 1002-1023. https://doi.org/10.1002/stc.1730
- Breuer, P., Chmielewski, T. and Gorski, P. (2021), "Dynamic response of the Stuttgart TV tower measured by classical instruments and GPS technology", Arch. Civil Eng., 67(1). https://doi.org/10.24425/ace.2021.136459
- Casciati, S. and Vece, M. (2017), "Real-time monitoring system for local storage and data transmission by remote control", Adv. Eng. Software, 112, 46-53. https://doi.org/10.1016/j.advengsoft.2017.06.010
- Chan, W.-S., Xu, Y.-L., Ding, X.-L., Xiong, Y.-L. and Dai, W.-J. (2006), "Assessment of dynamic measurement accuracy of GPS in three directions", J. Survey. Eng., 132(3), 108-117. https://doi.org/10.1061/(ASCE)0733-9453(2006)132:3(108)
- Chatzi, E.N. and Fuggini, C. (2012), "Structural identification of a super-tall tower by GPS and accelerometer data fusion using a multi-rate Kalman filter", In: Life-Cycle and Sustainability of Civil Infrastructure Systems, Proceedings of the 3rd International Symposium on Life-Cycle Civil Engineering, IALCCE 2012, Vienna, Austria, October.
- Cook, D. (2006), "Robotic total stations and remote data capture: Challenges in construct", In: Geotechnical News (Vol. 24, Issue 4).
- Cosser, E., Roberts, G.W., Meng, X. and Dodson, A.H. (2003), "Measuring the dynamic deformation of bridges using a total station", Proceedings of 11th FIG Symposium on Deformation Monitoring, Santorini, Greece, May.
- Ehigiator, M.O. and Ehigiator-Irughe, R. (2018), "Formulation and implementation of mathematical models suitable for deformation analysis of structures", Nigerian J. Technol., 37(2), 294-301. https://doi.org/10.4314/njt.v37i2.2
- Ehigiator, M.O., Oladosu, S.O. and Ehigiator-Irughe, R. (2017), "Application of Least Squares Estimation Techniques in 2D Conformal Coordinates Transformation from Local to National", Nigerian J. Environ. Sci. Technol., 1(2), 71-84. https://doi.org/10.36263/nijest.2017.02.0039
- Ehigiator-Irughe, R., Ehiorobo, J.O. and Ehigiator, M.O. (2010), "Distortion of oil and Gas infrastructure from Geomatics support view", J. Emerg. Trends Eng. Appl. Sci. (JETEAS), 1, 14-23. https://hdl.handle.net/10520/EJC156745 10520/EJC156745
- Erdogan, H. and Gulal, E. (2013), "Ambient vibration measurements of the Bosphorus suspension bridge by total station and GPS", Experim. Techniq., 37(3), 16-23. https://doi.org/10.1111/j.1747-1567.2011.00723.x
- Frukacz, M., Presl, R., Wieser, A. and Favot, D. (2017), "Pushing the sensitivity limits of RTS-based continuous deformation monitoring of an alpine valley", Appl. Geomat., 9(2), 81-92. https://doi.org/10.1007/s12518-017-0182-2
- Hatoum, H.M. and Mustafin, M.G. (2020), "Optimization of locating robotic total stations for determining the deformations of buildings and structures", Geodezia i Kartografia, 963(9). https://doi.org/10.22389/0016-7126-2020-963-9-2-13
- Jo, H., Sim, S.H., Tatkowski, A., Spencer, B.F. and Nelson, M.E. (2013), "Feasibility of displacement monitoring using low-cost GPS receivers", Struct. Control Health Monitor., 20(9), 1240-1254. https://doi.org/10.1002/stc.1532
- Kaloop, M.R. and Li, H. (2009), "Tower bridge movement analysis with GPS and accelerometer techniques: Case study Yonghe tower bridge", Inform. Technol. J., 8(8), 1213-1220. https://doi.org/10.3923/itj.2009.1213.1220
- Kaloop, M.R., Elbeltagi, E. and Elnabwy, M.T. (2015), "Bridge monitoring with wavelet principal component and spectrum analysis based on GPS measurements: Case study of the Mansoura Bridge in Egypt", J. Perform. Constr. Facil., 29(3), p. 04014071. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000559
- Kaloop, M.R., Hu, J.W. and Elbeltagi, E. (2016), "Adjustment and assessment of the measurements of low and high sampling frequencies of GPS real-time monitoring of structural movement", ISPRS Int. J. Geo-Inform., 5(12), 222. https://doi.org/10.3390/ijgi5120222
- Kovacic, B. and Motoh, T. (2019), "Determination of static and dynamic response of structures with geodetic methods in loading tests", Acta Geodaetica et Geophysica, 54(2), 243-261. https://doi.org/10.1007/s40328-019-00251-x
- Lekidis, V., Tsakiri, M., Makra, K., Karakostas, C., Klimis, N. and Sous, I. (2005), "Evaluation of dynamic response and local soil effects of the Evripos cable-stayed bridge using multi-sensor monitoring systems", Eng. Geol., 79(1-2), 43-59. https://doi.org/10.1016/j.enggeo.2004.10.015
- Lienhart, W., Ehrhart, M. and Grick, M. (2017), "High frequent total station measurements for the monitoring of bridge vibrations", J. Appl. Geodesy, 11(1), 1-8. https://doi.org/10.1515/jag-2016-0028
- Meng, X., Dodson, A.H. and Roberts, G.W. (2007), "Detecting bridge dynamics with GPS and triaxial accelerometers", Eng. Struct., 29(11), 3178-3184. https://doi.org/10.1016/j.engstruct.2007.03.012
- Moschas, F. and Stiros, S. (2011), "Measurement of the dynamic displacements and the modal frequencies of a short-span pedestrian bridge using GPS and an accelerometer", Eng. Struct., 33(1), 10-17. https://doi.org/10.1016/j.engstruct.2010.09.013
- Moschas, F., Psimoulis, P.A. and Stiros, S.C. (2013), "GPS/RTS data fusion to overcome signal deficiencies in certain bridge dynamic monitoring projects", Smart Struct. Syst., Int. J., 12(3-4), 251-269. https://doi.org/10.12989/sss.2013.12.3_4.251
- Okwuashi, O. and Asuquo, I. (2012), "Basics of Least Squares Adjustment Computation in Surveying", Int. J. Sci. Res. (IJSR), 3(8), 188-193.
- Park, H.S., Lee, H.M., Adeli, H. and Lee, I. (2007), "A new approach for health monitoring of structures: Terrestrial laser scanning", Comput.-Aided Civil Infrastr. Eng., 22(1), 19-30. https://doi.org/10.1111/j.1467-8667.2006.00466.x
- Pehlivan, H. (2018), "Frequency analysis of GPS data for structural health monitoring observations", Struct. Eng. Mech., Int. J., 66(2), 185-193. https://doi.org/10.12989/sem.2018.66.2.185
- Pehlivan, H. (2021), "The Analysis Methodology of Robotic Total Station Data for Determination of Structural Displacements", Adv. Geomat., 1(1), 1-7.
- Pehlivan, H. and Bayata, H.F. (2016), "Usability of inclinometers as a complementary measurement tool in structural monitoring", Struct. Eng. Mech., Int. J., 58(6), 1077-1085. https://doi.org/10.12989/sem.2016.58.6.1077
- Pehlivan, H., Aydin, O., Gulal, E. and Bilgili, E. (2015), "Determining the behavior of high-rise structures with geodetic hybrid sensors", Geomat. Nat. Hazards Risk, 6(8), 702-717. https://doi.org/10.1080/19475705.2013.854280
- Psimoulis, P.A. and Stiros, S.C. (2007), "Measurement of deflections and of oscillation frequencies of engineering structures using Robotic Theodolites (RTS)", Eng. Struct., 29(12), 3312-3324. https://doi.org/10.1016/j.engstruct.2007.09.006
- Psimoulis, P.A. and Stiros, S.C. (2008), "Experimental assessment of the accuracy of GPS and RTS for the determination of the parameters of oscillation of major structures", Comput.-Aided Civil Infrastr. Eng., 23(5), 389-403. https://doi.org/10.1111/j.1467-8667.2008.00547
- Psimoulis, P. and Stiros, S. (2011), "Robotic theodolites (RTS): Measuring structure excitation", GIM Int., 25(4), 29-33.
- Psimoulis, P. and Stiros, S. (2013), "Measuring deflections of a short-span railway bridge using a Robotic Total Station (RTS)", J. Bridge Eng., 18(2), 182-185. http://dx.doi.org/10.1061/(ASCE)BE.1943-5592.0000334
- Psimoulis, P., Pytharouli, S., Karambalis, D. and Stiros, S. (2008), "Potential of Global Positioning System (GPS) to measure frequencies of oscillations of engineering structures", J. Sound Vib., 318(3), 606-623. https://doi.org/10.1016/j.jsv.2008.04.036
- Radovanovic, R.S. and Teskey, W.F. (2001), "Dynamic monitoring of deforming structures: GPS versus robotic tacheometry systems", Proceeding of the10th FIG International Symposium on Deformation Measurements, Orange, CA, USA, March.
- Roberts, G.W., Meng, X. and Dodson, A.H. (2004), "Integrating a global positioning system and accelerometers to monitor the deflection of bridges", J. Survey. Eng., 130(2), 65-72. https://doi.org/10.1061/(ASCE)0733-9453(2004)130:2(65)
- Shen, N., Chen, L., Liu, J., Wang, L., Tao, T., Wu, D. and Chen, R. (2019), "A review of global navigation satellite system (GNSS)- based dynamic monitoring technologies for structural health monitoring", Remote Sensing, 11(9), p. 1001. https://doi.org/10.3390/rs11091001
- Stiros, S., Psimoulis, P., Moschas, F., Saltogianni, V., Tsantopoulos, E. and Triantafyllidis, P. (2019), "Multi-sensor measurement of dynamic deflections and structural health monitoring of flexible and stiff bridges", Bridge Struct., 15(1-2), 43-51. https://doi.org/10.3233/BRS-190152
- Trimble (2021), https://geospatial.trimble.com/products-andsolutions/trimble-s5.htm.
- Wang, X., Zhao, Q., Xi, R., Li, C., Li, G. and Li, L. (2021), "Review of bridge structural health monitoring based on GNSS: from displacement monitoring to dynamic characteristic identification", IEEE Access, 9, 80043-80065 https://doi.org/10.1109/ACCESS.2021.3083749
- Xu, L., Guo, J.J. and Jiang, J.J. (2002), "Time-frequency analysis of a suspension bridge based on GPS", J. Sound Vib., 254(1), 105-116. https://doi.org/10.1006/jsvi.2001.4087
- Yigit, C.O., Coskun, M.Z., Yavasoglu, H., Arslan, A. and Kalkan, Y. (2016), "The potential of GPS Precise Point Positioning method for point displacement monitoring: A case study", Measurement, 91, 398-404. https://doi.org/10.1016/j.measurement.2016.05.074
- Yu, J., Meng, X., Shao, X., Yan, B. and Yang, L. (2014), "Identification of dynamic displacements and modal frequencies of a medium-span suspension bridge using multimode GNSS processing", Eng. Struct., 81, 432-443. https://doi.org/10.1016/j.engstruct.2014.10.010
- Yu, J., Yan, B., Meng, X., Shao, X. and Ye, H. (2016), "Measurement of bridge dynamic responses using networkbased real-time kinematic GNSS technique", J. Survey. Eng., 142(3), p. 04015013. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000167
- Yu, J., Fang, Z., Meng, X., Xie, Y. and Fan, Q. (2020), "Measurement of quasi-static and dynamic displacements of footbridges using the composite instrument of a smartstation and an accelerometer: Case studies", Remote Sensing, 12(16), 2635. https://doi.org/10.3390/RS12162635
- Zhao, X., Liu, H., Yu, Y., Xu, X., Hu, W., Li, M. and Ou, J. (2015), "Bridge displacement monitoring method based on laser projection-sensing technology", Sensors, 15(4), 8444-8463. https://doi.org/10.3390/s150408444
- Zhou, J., Xiao, H., Jiang, W., Bai, W. and Liu, G. (2020), "Automatic subway tunnel displacement monitoring using robotic total station", Measurement, 151, p. 107251. https://doi.org/10.1016/j.measurement.2019.107251
- Zhou, J., Shi, B., Liu, G. and Ju, S. (2021), "Accuracy analysis of dam deformation monitoring and correction of refraction with robotic total station", PLoS ONE, 16, p. e0251281. https://doi.org/10.1371/journal.pone.0251281