DOI QR코드

DOI QR Code

Nanofibers Comprising Mo2C/Mo2N Nanoparticles and Reduced Graphene Oxide as Functional Interlayers for Lithium-Sulfur Batteries

Mo2C/Mo2N 나노 입자와 환원된 그래핀 옥사이드가 복합된 나노 섬유 중간층이 적용된 리튬-황 전지

  • Lee, Jae Seob (Department of Engineering Chemistry, Chungbuk National University) ;
  • Yang, Ji Hoon (Department of Engineering Chemistry, Chungbuk National University) ;
  • Cho, Jung Sang (Department of Engineering Chemistry, Chungbuk National University)
  • 이재섭 (충북대학교 공업화학과) ;
  • 양지훈 (충북대학교 공업화학과) ;
  • 조중상 (충북대학교 공업화학과)
  • Received : 2022.05.17
  • Accepted : 2022.06.20
  • Published : 2022.11.01

Abstract

Nanofibers comprising reduced graphene oxide (rGO) and Mo2C/Mo2N nanoparticles (Mo2C/Mo2N rGO NFs) were prepared for a functional interlayer of Li-S batteries (LSBs). The well-dispersed Mo2C and Mo2N nanoparticles in the nanofiber structure served as active polar sites for efficient immobilization of dissolved lithium polysulfide. The rGO nanosheets in the structure also provide conductive channels for fast ion/electron transport during charging-discharging and ensured reuse of lithium polysulfide during redox reactions through a fast charge transfer process. As a result, the cell assembled with Mo2C/Mo2N rGO NFs-coated separator and pure sulfur electrode (70 wt% of sulfur content and 2.1 mg cm-2 of sulfur loading) showed a stable discharge capacity of 476 mA h g-1 after 400 charge-discharge cycles at 0.1 C. Furthermore, it exhibited a discharge capacity of 574 mA h g-1 even at a high current density of 1.0 C. Therefore, we believe that the proposed unique nanostructure synthesis strategy could provide new insights into the development of sustainable and highly conductive polar materials as functional interlayers for high performance LSBs.

리튬-황 전지의 기능성 중간층으로 그래핀과 Mo2C/Mo2N 나노입자로 구성된 나노섬유(Mo2C/Mo2N rGO NFs)를 사용하였다. Mo2C/Mo2N 나노입자는 섬유 구조 내 고르게 분산되어 리튬 폴리설파이드의 화학적 흡착을 위한 활성 사이트 역할을 함으로써 전해질로의 용출을 효과적으로 억제하였다. 또한 구조 내 매트릭스로 구성된 그래핀 나노시트는 충방전이 진행되는 동안 이온 및 전자의 빠른 이동을 보장할 뿐만 아니라 반응 시 산화/환원 반응을 원활하게 하여 높은 리튬 폴리설파이드의 재사용을 보장하였다. 그 결과 Mo2C/Mo2N rGO NFs로 코팅된 분리막을 기능성 중간층으로 사용, 순수 황 전극(황 함량 70 wt%, 황 로딩 2.1 mg cm-2)으로 제작된 리튬-황 전지는 0.1 C에서 400회 충방전 후 476 mA h g-1의 안정적인 방전 용량을 나타냈으며, 1.0 C의 높은 전류밀도에서도 574 mA h g-1의 방전용량을 나타내었다. 본 연구에서 제안된 나노구조체 합성 전략은 고성능 리튬-황 전지 용 기능성 중간층 및 다양한 에너지 저장 소재분야로의 확장이 가능하다.

Keywords

Acknowledgement

본 연구는 2021년도 정부(미래창조과학부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2021R1A4A2001687, NRF-2021R1I1A3057700).

References

  1. 1. Kong, W., Yan, L., Luo, Y., Wang, D., Jiang, K., Li, Q., Fan, S. and Wang, J., "Ultrathin MnO2/Graphene Oxide/Carbon Nanotube Interlayer as Efficient Polysulfide-Trapping Shield for High-Performance Li-S Batteries," Adv. Funct. Mater., 27(18), 1606663(2017).
  2. Saroha, R., Oh, J. H., Seon, Y. H., Kang, Y. C., Lee, J. S., Jeong, D. W. and Cho, J. S., "Freestanding Interlayers for Li-S Batteries:Design and Synthesis of Hierarchically Porous N-Doped C Nanofibers Comprising Vanadium Nitride Quantum Dots and MOF-Derived Hollow N-Doped C Nanocages," J. Mater. Chem. A., 9(19), 11651-11664(2021). https://doi.org/10.1039/D1TA01802G
  3. Saroha, R., Oh, J. H., Lee, J. S., Kang, Y. C., Jeong, S. M., Kang, D. W., Cho, C. and Cho, J. S., "Hierarchically Porous Nanofibers Comprising Multiple Core-Shell Co3O4@Graphitic Carbon Nanoparticles Grafted within N-Doped CNTs as Functional Interlayers for Excellent Li-S Batteries," Chem. Eng. J., 426, 130805(2021).
  4. Chen, G., Li, Y., Zhong, W., Zheng, F., Hu, J., Ji, X., Liu, W., Yang, C., Lin, Z. and Liu, M., "MOFs-Derived Porous Mo2C-C Nano-Octahedrons Enable High-Performance Lithium-Sulfur Batteries," Energy Stor. Mater., 25, 547-554(2020). https://doi.org/10.1016/j.ensm.2019.09.028
  5. Lv, L. P., Guo, C. F., Sun, W. and Wang, Y., "Strong SurfaceBound Sulfur in Carbon Nanotube Bridged Hierarchical Mo2CBased MXene Nanosheets for Lithium-Sulfur Batteries," Small, 15(3), 1804338(2019).
  6. Jiang, Y., Chen, F., Gao, Y., Wang, Y., Wang, S., Gao, Q., Jiao, Z., Zhao, B. and Chen, Z., "Inhibiting the Shuttle Effect of Li-S Battery with a Graphene Oxide Coating Separator: Performance Improvement and Mechanism Study," J. Power Sources, 342, 929-938(2017). https://doi.org/10.1016/j.jpowsour.2017.01.013
  7. Yang, J. L., Cai, D. Q., Lin, Q., Wang, X. Y., Fang, Z. Q., Hyang, L., Wang, Z. J., Hao, X. G., Zhao, S. X., Li, J., Cao, G. Z. and Lv, W., "Regulating the Li2S Deposition by Grain Boundaries in Metal Nitrides for Stable Lithium-Sulfur Batteries," Nano Energy, 91, 106669(2022).
  8. Vizintin, A., Lozinsek, M., Chellappan, R. K., Foix, D., Krajnc, A., Mali, G., Drazic, G., Genorio, B., Dedryvere, R. and Dominko, R., "Fluorinated Reduced Graphene Oxide as an Interlayer in Li-S Batteries," Chem. Mater., 27(20), 7070-7081(2015). https://doi.org/10.1021/acs.chemmater.5b02906
  9. Hu, G., Xu, C., Sun, Z., Wang, S., Cheng, H. M., Li, F. and Ren, W., "3D Graphene-Foam-Reduced-Graphene-Oxide Hybrid Nested Hierarchical Networks for High-Performance Li-S Batteries," Adv. Mater., 28(8), 1603-1609(2015). https://doi.org/10.1002/adma.201504765
  10. Wang, X., Wang, Z. and Chen, L., "Reduced Graphene Oxide Film as a Shuttle-Inhibiting Interlayer in a Lithium-Sulfur Battery," J. Power Sources, 242, 63-69(2013).
  11. Zhou, J., Yu, X., Fan, X., Wang, X., Li, H., Zhang, Y., Li, W., Zheng, J., Wang, B. and Li, X., "The Impact of the Particle Size of a Metal-Organic Framework for Sulfur Storage in Li-S Batteries," J. Mater. Chem. A., 3(16), 8272-8275(2015). https://doi.org/10.1039/C5TA00524H
  12. Kim, K., Kim, P. J., Youngblood, J. P. and Pol, V. G., "Surface Functionalization of Carbon Architecture with Nano-MnO2 for Effective Polysulfide Confinement in Lithium-Sulfur Batteries," ChemSusChem 11(14), 2375-2381(2018). https://doi.org/10.1002/cssc.201800894
  13. Liang, G., Wu, J., Qin, X., Liu, M., Li, Q., He, Y.-B., Kim, J.-K., Li, B. and Kang, F., "Ultrafine TiO2 Decorated Carbon Nanofibers as Multifunctional Interlayer for High-Performance Lithium-Sulfur Battery," ACS Appl. Mater. Interfaces 8(35), 23105-23113(2016). https://doi.org/10.1021/acsami.6b07487
  14. Zheng, X.-X., Zhao, S.-X., Yang, J.-L., Lu, Y.-M., Wu, Q.-L. and Zeng, X.-T., "Facile Synthesis of Porous Co3O4 Nanoflakes as an Interlayer for High Performance Lithium-Sulfur Batteries," Dalton Trans. 49(17), 5677-5683(2020). https://doi.org/10.1039/d0dt00429d
  15. Liu, X., Huang, J.-Q., Zhang, Q. and Mai, L., "Nanostructured Metal Oxides and Sulfides for Lithium-Sulfur Batteries," Adv. Mater 29(20), 1601759(2017).
  16. Yang, J. L., Zhao, S. X., Lu, Y. M., Zeng, X. T., Lv, W. and Cao, G. Z., "In-Situ Topochemical Nitridation Derivative MoO2-Mo2N Binary Nanobelts as Multifunctional Interlayer for FastKinetic Li-Sulfur Batteries," Nano Energy, 68, 104356(2020).
  17. Zeng, X., Gao, X., Li, G., Sun, M., Lin, Z., Ling, M,, Zheng, J. and Liang, C., "Conductive Molybdenum Carbide as the Polysulfide Reservoir for Lithium-Sulfur Batteries," J. Mater. Chem. A., 6(35), 17142-17147(2018). https://doi.org/10.1039/C8TA05904G
  18. Kim, J.-K., "Hybrid Gel Polymer Electrolyte for High-Safety Lithium-Sulfur Batteries," Mater. Lett., 187, 40-43(2017). https://doi.org/10.1016/j.matlet.2016.10.069
  19. Ma, G., Wen, Z. Wang, Q., Shen, C., Peng, P., Jin, J. and Wu, X., "Enhanced Performance of Lithium Sulfur Battery with SelfAssembly Polypyrrole Nanotube Film as the Functional Interlayer," J. Power Sources, 273, 511-516(2015). https://doi.org/10.1016/j.jpowsour.2014.09.141
  20. Chen, L., Yu, H., Li, W., Dirican, M., Liu Y. and Zhang, X., "Interlayer Design Based on Carbon Materials for Lithium-Sulfur Batteries: A Review," J. Mater. Chem. A., 8(21), 10709-10735(2020). https://doi.org/10.1039/d0ta03028g
  21. Zhang, K., Qin, F., Fang, J., Li, Q., Jia, M., Lai, Y., Zhang, Z. and Li, J., "Nickel Foam as Interlayer to Improve the Performance of Lithium-Sulfur Battery," J. Solid State Electrochem., 18, 1025-1029(2014). https://doi.org/10.1007/s10008-013-2351-5
  22. Xiao, Z., Yang, Z., Wang, L., Nie, H., Zhong, M., Lai, Q., Xu, X., Zhang, L. and Huang, S., "A Lightweight TiO2/Graphene Interlayer, Applied as a Highly Effective Polysulfide Absorbent for Fast, Long-Life Lithium-Sulfur Batteries," Adv. Mater., 27(18), 2891-2898(2015). https://doi.org/10.1002/adma.201405637
  23. Fan, L., Li, M., Li, X., Xiao, W., Chen, Z. and Lu, J., "Interlayer Material Selection for Lithium-Sulfur Batteries," Joule, 3(2), 361-386(2019). https://doi.org/10.1016/j.joule.2019.01.003
  24. Huang, J. Q., Zhang, Q. and Wei, F., "Multi-Functional Separator/Interlayer System for High-Stable Lithium-Sulfur Batteries: Progress and Prospects," Energy Stor. Mater., 1, 127-145(2015).
  25. Liu, M., Yang, Z., Sun, H., Lai, C., Zhao, X., Peng, H. and Liu, T., "A Hybrid Carbon Aerogel With Both Aligned and Interconnected Pores as Interlayer for High-Performance Lithium-Sulfur Batteries," Nano Res., 9, 3735-3746(2016). https://doi.org/10.1007/s12274-016-1244-1
  26. Yu, B., Chen, D., Wang, Z., Qi, F., Zhang, X., Wang, X., Hu, Y., Wang, B., Zhang, W., Chen, Y., He, J. and He, W., "Mo2C Quantum Dots@Graphene Functionalized Separator Toward HighCurrent-Density Lithium Metal Anodes for Ultrastable Li-S Batteries," Chem. Eng. J., 399, 125837(2020).
  27. Sun, Z., Zhang, J., Yin, L., Hu, G., Fang, R., Cheng, H. M. and Li, F., "Conductive Porous Vanadium Nitride/Graphene Composite as Chemical Anchor of Polysulfides for Lithium-Sulfur Batteries," Nat. Commun., 8, 14627(2017).
  28. Park, G. D., Cho, J. S., Kang, Y. C., "Multiphase and Double-Layer NiFe2O4@NiO-Hollow-Nanosphere-Decorated Reduced Graphene Oxide Composite Powders Prepared by Spray Pyrolysis Applying Nanoscale Kirkendall Diffusion," ACS Appl. Mater. Interfaces 7(30), 16842-16849(2015). https://doi.org/10.1021/acsami.5b04891
  29. Lee, J. S., Jo, M. S., Saroha, R., Jung, D. S., Seon, Y. H., Lee, J. S., Kang, Y. C., Kang, D. W. and Cho, J. S., "Hierarchically Well-Developed Porous Graphene Nanofibers Comprising NDoped Graphitic C-Coated Cobalt Oxide Hollow Nanospheres as Anodes for High-Rate Li-Ion Batteries," Small, 16(32), 2002213(2020).
  30. Cho, J. S., Park, S. K., Jeon, K. M., Piao, Y. and Kang, Y. C., "Mesoporous Reduced Graphene Oxide/WSe2 Composite Particles for Efficient Sodium-Ion Batteries and Hydrogen Evolution Reactions," Appl. Surf. Sci., 459, 309-317(2018). https://doi.org/10.1016/j.apsusc.2018.07.200
  31. Zhuang, R., Yao, S., Liu, M., Wu, J., Shen, X. and Li, T., "β-Molybdenum Carbide/Carbon Nanofibers as a Shuttle Inhibitor for Lithium-Sulfur Battery with High Sulfur Loading," Int. J. Energy Res., 43(13), 7655-7663(2019).
  32. Oh, S. H., Park, S. M., Kang, D.-W., Kang, Y. C. and Cho, J. S., "Fibrous Network of Highly Integrated Carbon Nanotubes/MoO3 Composite Bundles Anchored with MoO3 Nanoplates for Superior Lithium Ion Battery Anodes," J. Ind. Eng. Chem., 83, 438-448(2020). https://doi.org/10.1016/j.jiec.2019.12.017
  33. Kong, L. L., Zhang, Z., Zhang, Y. Z., Liu, S., Li, G. R. and Gao, X. P., "Porous Carbon Paper as Interlayer to Stabilize the Lithium Anode for Lithium-Sulfur Battery," ACS Appl. Mater. Interfaces 8(46), 31684-31694(2016). https://doi.org/10.1021/acsami.6b11188
  34. Wang, D., Cao, Q., Jing, B., Wang, X., Huang, T., Zeng, P., Jiang, S., Zhang, Q. and Sun, J., "A Freestanding Metallic Tin-Modified and Nitrogen-Doped Carbon Skeleton as Interlayer for Lithium-Sulfur Battery," Chem. Eng. J., 399, 125723(2020).
  35. Wang, J., Wu, T., Zhang, S., Gu, S., Jin, J. and Wen, Z., "MetalOrganic-Framework-Derived N-C-Co Film as a Shuttle-Suppressing Interlayer for Lithium Sulfur Battery," Chem. Eng. J., 334, 2356-2362(2018). https://doi.org/10.1016/j.cej.2017.11.180
  36. Zhuang, R., Yao, S., Shen, X. and Li, T., "A Freestanding MoO2-Decorated Carbon Nanofibers Interlayer for Rechargeable Lithium Sulfur Battery," Int. J. Energy Res., 43(3), 1111-1120(2019). https://doi.org/10.1002/er.4334