DOI QR코드

DOI QR Code

Conceptual Design of Vanillin Production Process Using Solvent Extraction

용매 추출을 사용한 바닐린 생산공정의 개념 설계

  • Kim, Eunkyu (School of Chemical Engineering, Chonnam National University) ;
  • Vu, Thang Toan (School of Chemical Engineering, Chonnam National University) ;
  • Song, Daesung (School of Chemical Engineering, Chonnam National University)
  • 김은규 (전남대학교 화학공학부) ;
  • ;
  • 송대성 (전남대학교 화학공학부)
  • Received : 2022.01.26
  • Accepted : 2022.03.23
  • Published : 2022.11.01

Abstract

This study presents a conceptual design of vanillin production from Kraft lignin. Most of the existing Kraft lignin is used as low-quality boiler fuel or discarded as wastewater, and only 2% or less of lignin has been refined into high-quality products. We propose the process developed in this study to utilize discarded Kraft lignin. The existing vanillin production concept process consisted of alkali oxidation using NaOH, filtration, chromatography, and crystallization. Chromatography, which is difficult to commercialize, was changed to a solvent extraction process. The recovery rate of vanillin of the proposed solvent extraction process is 92.9%, and the purity is 99.5%, which is similar to the existing chromatography process. The reason why the solvent extraction process showing similar results to chromatography can replace the existing chromatography process was analyzed.

본 연구에서는 크라프트 리그닌(Kraft Lignin)을 사용해 바닐린을 생산하는 공정의 개념 설계를 진행하였다. 기존 크라프트 리그닌은 대부분 저품질의 보일러 연료로 사용되거나 폐수로 버려지고 오직 2% 이하의 리그닌만 고품질의 제품으로 정제된다. 버려지는 크라프트 리그닌을 활용하기 위해 새로운 공정을 제안하였다. 기존 바닐린 생산 개념 공정은 NaOH를 사용한 알칼리 산화, 여과, 크로마토그래피, 결정화 단계로 진행됐다. 이중 상용화가 어려운 크로마토그래피를 용매 추출 공정으로 변경하였다. 제안된 용매 추출 공정의 바닐린 회수율 92.9%, 순도 99.5%이며, 이는 기존 크로마토그래피 공정과 유사한 수준이다. 크로마토그래피와 비슷한 결과를 보이는 용매 추출 공정이 기존 크로마토그래피 공정을 대체할 수 있는 이유를 분석하였다.

Keywords

Acknowledgement

이 논문은 전남대학교 학술연구비(과제번호: 2021-2473) 지원에 의하여 연구되었음.

References

  1. Wongtanyawat, N., Lusanandana, P., Khwanjaisakun, N., Kongpanna, P., Phromprasit, J., Simasatitkul, L., Amornraksa, S. and Assabumrungrat, S., "Comparison of Different Kraft Ligninbased Vanillin Production Processes," Comp. & Chem. Eng., 117, 159(2018).
  2. Mota, M. I. F., Rodrigues Pinto, P. C., Loureiro, J. M. and Rodrigues, A. E., "Recovery of Vanillin and Syringaldehyde From Lignin Oxidation: A Review of Separation and Purification Processes," Sep. Purif. Rev., 45, 227(2016).
  3. Bomgardner, M. M., "The Problem with Vanilla," Chem. Eng. News, 94, 38(2016).
  4. Chattopadhyay, P., Banerjee, G. and Sen, S. K., "Cleaner Production of Vanillin Through Biotransformation of Ferulic Acid Esters from Agroresidue by Streptomyces Sannanensis," J. Clean. Prod., 182, 272(2018).
  5. Bomgardner, M., "Following Many Routes to Naturally Derived Vanillin," Chem. Eng. News, 92, 14(2014).
  6. Qu, C., Kaneko, M., Kashimura, K., Tanaka, K., Ozawa, S. and Watanabe, T., "Direct Production of Vanillin from Wood Particles by Copper Oxide-peroxide Reaction Promoted by Electric and Magnetic Fields of Microwaves," ACS Sustain. Chem. Eng., 5, 11551(2017).
  7. Khwanjaisakun, N., Amornraksa, S., Simasatitkul, L., Charoensuppanimit, P. and Assabumrungrat, S., "Techno-economic Analysis of Vanillin Production from Kraft Lignin: Feasibility Study of Lignin Valorization," Bioresour. Technol., 299, 122559(2020).
  8. Sung Phil Mun, Utilization of Lignin : Past, Present, Future, 34 (2013).
  9. Laurichesse, S. and Averous, L., "Chemical Modification of Lignins: Towards Biobased Polymers," Prog. Polym. Sci., 39, 1266(2014).
  10. Maeda, M., Hosoya, T., Yoshioka, K., Miyafuji, H., Ohno, H. and Yamada, T., "Vanillin Production from Native Softwood Lignin in the Presence of Tetrabutylammonium Ion," J. Wood Sci. 64, 810(2018).
  11. Gomes, E. and Rodrigues, A., "Recovery of Vanillin from Kraft Lignin Depolymerization with Water as Desorption Eluent," Sep. Purif. Technol., 239, 116551(2020).
  12. Wang, Y., Sun, S., Li, F., Cao, X. and Sun, R., "Production of Vanillin from Lignin: The Relationship Between 𝛽-o-4 Linkages and Vanillin Yield," Ind Crops Prod., 116, 116(2018).
  13. Fache, M., Boutevin, B. and Caillol, S., "Epoxy Thermosets from Model Mixtures of the Lignin-to-vanillin Process," Green Chem. 18, 712(2016).
  14. Luziatelli, F., Brunetti, L., Ficca, A. G. and Ruzzi, M., "Maximizing the Efficiency of Vanillin Production by Biocatalyst Enhancement and Process Optimization," Front. Bioeng. Biotechnol., 7, 279(2019).
  15. McCallum, C. S., Wang, W., Doran, W. J., Forsythe, W. G., Garrett, M. D., Hardacre, C., Leahy, J. J., Morgan, K., Shin, D.-S. and Sheldrake, G. N., "Life Cycle Thinking Case Study for Catalytic Wet Air Oxidation of Lignin in Bamboo Biomass for Vanillin Production," Green Chem., 23, 1847(2021).
  16. Marquez-Medina, M. D., Rodriguez-Padron, D., Balu, A. M., Romero, A. A., Munoz-Batista, M. J. and Luque, R., "Mechanochemically Synthesized Supported Magnetic Fe-nanoparticles as Catalysts for Efficient Vanillin Production," Catalysts, 9, 290(2019).
  17. Vu, T. T., Lim, Y.-I., Song, D., Hwang, K.-R. and Kim, D.-K., "Economic Analysis of Vanillin Production from Kraft Lignin Using Alkaline Oxidation and Regeneration," Biomass Convers. Biorefinery., 1(2021).
  18. Werhan, H., "A Process for the Complete Valorization of Lignin Into Aromatic Chemicals Based on Acidic Oxidation," (2013).
  19. Gomes, E. D. and Rodrigues, A. E., "Lignin Biorefinery: Separation of Vanillin, Vanillic Acid and Acetovanillone by Adsorption," Sep. Purif. Technol., 216, 92(2019).
  20. Alexandre Vigneault, D. K. J., Esteban Chornet, "Base-catalyzed Depolymerization of Lignin Separation of Monomers," Can. J. Chem. Eng.,(2008).
  21. Bradley, J.-C., Friesen, B., Mancinelli, J., Bohinski, T., Mirza, K., Bulger, D., Moritz, M., Federici, M., Rein, D., Tchakounte, C., Bradley, J.-C., Truong, H., Neylon, C., Guha, R., Williams, A., Hooker, B., Hale, J. and Lang, A., "Open Notebook Science Challenge: Solubilities of Organic Compounds in Organic Solvents," Nat. Preced.(2010).
  22. Noubigh, A., Mgaidi, A., Abderrabba, M., Provost, E. and Furst, W., "Effect of Salts on the Solubility of Phenolic Compounds: Experimental Measurements and Modelling," J. Sci. Food Agric., 87, 783(2007).
  23. Shakeel, F., Haq, N. and Siddiqui, N. A., "Solubility and Thermodynamic Function of Vanillin in Ten Different Environmentally Benign Solvents," Food Chem., 180, 244(2015).
  24. Ragnar, M., Lindgren, C. T. and Nilvebrant, N.-O., "Pka-values of Guaiacyl and Syringyl Phenols Related to Lignin," J. Wood Chem. Technol., 20, 277(2000).
  25. Gomes, E. and Rodrigues, A., "Crystallization of Vanillin from Kraft Lignin Oxidation," Sep. Purif. Technol., 247, 116977(2020).
  26. Mota, M. I., "Fractionation and Purification of Syringaldehyde and Vanilin from Oxidation of Lignin," (2017).
  27. Timedjeghdine, M., Hasseine, A., Binous, H., Bacha, O. and Attarakih, M., "Liquid-liquid Equilibrium Data for Water + Formic Acid + Solvent (butyl acetate, ethyl acetate, and isoamyl alcohol) at t=291.15 k," Fluid Ph. Equilibria 415, 51(2016).
  28. Weiser, R. B. and Geankoplis, C. J., "Lactic Acid Purification by Extraction," Ind. Eng. Chem., 47, 858(1955).
  29. Rydberg, J., Solvent Extraction Principles and Practice, Revised and Expanded, CRC press (2004).
  30. Toikka, M., Samarov, A., Trofimova, M., Golikova, A., Tsvetov, N. and Toikka, A., "Solubility, Liquid-liquid Equilibrium and Critical States for the Quaternary System Acetic Acid-ethanol-ethyl Acetate-water at 303.15 k and 313.15 k," Fluid Ph. Equilibria 373, 72(2014).
  31. Rydberg, J., Solvent Extraction Principles and Practice, Revised and Expanded, CRC press(2004).
  32. Toikka, M., Samarov, A., Trofimova, M., Golikova, A., Tsvetov, N. and Toikka, A., "Solubility, Liquid-liquid Equilibrium and Critical States for the Quaternary System Acetic Acid-ethanol-ethyl Acetate-water at 303.15 k and 313.15 k," Fluid Ph. Equilibria 373, 72(2014).
  33. Ryan Davis, N. G., Ling Tao, Mary J. Biddy, Eric C. D. Tan, Gregg T. Beckham, David Humbird, David N. Thompson, and Mohammad S. Roni, "Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels and Coproducts 2018 Biochemical Design Case Update," p. 147(2018).
  34. Jiang, X., Abbati de Assis, C., Kollman, M., Sun, R., Jameel, H., Chang, H.-M. and Gonzalez, R., "Lignin Fractionation from Laboratory to Commercialization: Chemistry, Scalability and Technoeconomic Analysis," Green Chem., 22, 448(2020).