DOI QR코드

DOI QR Code

K계열 함침 탄소계 흡착제의 실내 저농도 이산화탄소 흡착성능 강화

Development of Potassium Impregnated Carbon Absorbents for Indoor CO2 Adsorption

  • 정세은 (한국에너지기술연구원 온실가스연구단) ;
  • ;
  • 이유리 (한국에너지기술연구원 온실가스연구단) ;
  • 원유섭 (한국에너지기술연구원 온실가스연구단) ;
  • 김재영 (한국에너지기술연구원 온실가스연구단) ;
  • 장재준 (한국에너지기술연구원 온실가스연구단) ;
  • 김하나 (한국에너지기술연구원 온실가스연구단) ;
  • 조성호 (한국에너지기술연구원 온실가스연구단) ;
  • 박영철 (한국에너지기술연구원 온실가스연구단) ;
  • 남형석 (북대학교 기계공학부)
  • Jeong, Se-Eun (Greenhouse Gas Laboratory, Korea Institute of Energy Research) ;
  • Wang, Shuang (Greenhouse Gas Laboratory, Korea Institute of Energy Research) ;
  • Lee, Yu-Ri (Greenhouse Gas Laboratory, Korea Institute of Energy Research) ;
  • Won, Yooseob (Greenhouse Gas Laboratory, Korea Institute of Energy Research) ;
  • Kim, Jae-Young (Greenhouse Gas Laboratory, Korea Institute of Energy Research) ;
  • Jang, Jae Jun (Greenhouse Gas Laboratory, Korea Institute of Energy Research) ;
  • Kim, Hana (Greenhouse Gas Laboratory, Korea Institute of Energy Research) ;
  • Jo, Sung-ho (Greenhouse Gas Laboratory, Korea Institute of Energy Research) ;
  • Park, Young Cheol (Greenhouse Gas Laboratory, Korea Institute of Energy Research) ;
  • Nam, Hyungseok (School of Mechanical Engineering, Kyungpook National University)
  • 투고 : 2022.04.29
  • 심사 : 2022.06.27
  • 발행 : 2022.11.01

초록

실내 거주 시간이 늘어나면서 발생하는 CO2를 인체에 무해한 농도인 1,000 ppmCO2 이하로 유지하기 위해 연구들이 활발히 진행 중이다. 본 연구에서는 저농도 CO2흡착제로서 KOH와 K2CO3와 같은 알칼리성 첨가제를 상용 활성탄에 함침하여 사용하였다. 흡착된 CO2 양은열중량분석기(TGA)와 chamber(CO2 IR analyzer)로평가하였다. 비표면적이 928.5 m2/g인 상용 활성탄(AC)은 KOH가 함침 된 KOH/AC(13.6 m2/g)와 K2CO3가 함침 된 K2CO3/AC(288.8 m2/g)보다 비표면적이 높았다. 챔버실험결과, AC는 CO2를 거의 흡착하지 않았지만, KOH/AC와 K2CO3/AC는 각각 93.5 mgCO2/gsample 및 94.5 mgCO2/gsample 흡착하였다. 이것은 비표면적 및 미세기공의 부피에 의한 물리적인 흡착 영향보다 알칼리성 활성점의 증가가 CO2 흡착에 더 유리하게 작용한 것으로 판단된다. KOH/AC와 K2CO3/AC의 재생성능은 chamber test 결과 대조군(K2CO3/Al+Si supports)과 비교했을 때 안정적으로 흡착 성능을 유지하는 것으로 나타났다(3회 반복 실험). 또한, KOH/AC와 K2CO3/AC는열중량분석기의절대습도 1%H2O를고려한조건에서 145.7 mgCO2/gsample및 150 mgCO2/gsample로 나타났다. 따라서 KOH 및 K2CO3 등과 같은 알칼리 성분의 함침은 상용 활성탄의 안정적인 흡착 및 재생 후 흡착성능을 나타내어, 실내 이산화탄소 저감을 위한 흡착제 개발에 적용될 수 있을 것으로 판단된다.

Relatively high indoor CO2 concentration (>1,000 ppm) has a negative impact on human health. In this work, indoor CO2 adsorbent was developed by impregnating KOH or K2CO3 on commercial activated carbon, named as KOH/AC and K2CO3/AC. Commercial activated carbon (AC) showed relatively high BET surface area (929 m2/g) whereas KOH/AC and K2CO3/AC presented lower BET surface area of 13.6 m2/g and 289 m2/g. Two experimental methods of TGA (2,000 ppmCO2, weight basis) and chamber test (initial concentration: 2,000 ppmCO2, CO2 IR analyzer) were used to investigate the adsorption capacity. KOH/AC and K2CO3/AC exhibited similar adsorption capacities (145~150 mgCO2/g), higher than K2CO3/Al+Si supports adsorbent (84.1 mgCO2/gsample). Similarly, chamber test also showed similar trend. Both KOH/AC and K2CO3/AC represented higher adsorption capacities (KOH/AC: 93.5 mgCO2/g K2CO3/AC: 94.5 mgCO2/gsample) K2CO3/Al+Si supports. This is due to the KOH or K2CO3 impregnation increased alkaline active sites (chemical adsorption), which is beneficial for CO2 adsorption. In addition, the regeneration test results showed both K-based adsorbents pose a good regeneration and reusability. Finally, the current study suggested that both KOH/AC and K2CO3/AC have a great potential to be used as CO2 adsorbent for indoor CO2 adsorption.

키워드

과제정보

본 연구는 한국에너지기술연구원 주요사업(C2-2440-01)을 재원으로 수행한 연구결과입니다.

참고문헌

  1. Lee, D. H. and Choi, Y. B., "Measurements and CFD Analysis for Release Rate of CO2 and Characteristics of Natural Ventilation in Lecture Room," Journal of the Korean Society of Safety, 36(1), 86-94(2021). https://doi.org/10.14346/JKOSOS.2021.36.1.86
  2. http://www.phiko.kr/bbs/board.php?bo_table=z3_01&wr_id=452(2013).
  3. Korean Law Information Center - Indoor Air Quality Control Act(Enforcement Date: Oct. 18, 2018 (https://www.law.go.kr/).
  4. Kang, H. R., Lee, Y. H., Eom, H. K. and Kim, S. S., "Trends and Prospects of Adsorption Technology for Indoor Carbon Dioxide," KIC News, 23(4), 1-12(2020).
  5. Diaz, E., Munoz, E., Vega, A. and Ordonez, S., "Enhancement of the CO2 Retention Capacity of Y Zeolites by Na and Cs Treatments: Effect of Adsorption Temperature and Water Treatment," Industrial and Engineering Chemistry Research, 47(2), 412-418(2007). https://doi.org/10.1021/ie070685c
  6. Lee, K. M., Lim, H. Y. and Jo, Y. M., "Evaluation of Moisture Effect on Low-Level CO2 Adsorption by Ion-Exchanged Zeolite," Environmental Technology, 33(1), 77-84(2012). https://doi.org/10.1080/09593330.2011.551837
  7. Lee, J. Y., Park, D. S., Cho, Y. M., Kwon, S. P., Hwang, Y. H., Song, H. J. and Lee, S. B., "A Study on the Low Concentration Carbon Dioxide Adsorbent and Optimal Conditions," 29(1), 1-12(2012).
  8. Kusumastuti, R., Sriyono, Pancoko, M., Butar-Butar, S. L., Putra, G. E. and Tjahjono, H., "Study On The Mechanism of CO2 Adsorption Process on Zeolite 5A as a Molecular Sieve In RDE System: An Infrared Investigation," Journal of Physics: Conference Series, 1198(3), 032009(2019).
  9. Brennan, J. K., Thomson, K. T. and Gubbins, K. E., "Adsorption of Water in Activated Carbons: Effects of Pore Blocking and Connectivity," Langmuir, 18(14), 5438-5447(2002). https://doi.org/10.1021/la011856
  10. Adinata, D., Daud, W. M. A. W. and Aroua, M. K., "Preparation and Characterization of Activated Carbon from Palm Shell by Chemical Activation with K2CO3", Bioresource Technology, 98(1), 145-149(2007). https://doi.org/10.1016/j.biortech.2005.11.006
  11. Zhao, G., Aziz, B. and Hedin, N., "Carbon Dioxide Adsorption on Mesoporous Silica Surfaces Containing Amine-like Motifs," Applied Energy, 87(9), 2907-2913(2010). https://doi.org/10.1016/j.apenergy.2009.06.008
  12. Moellmer, J., Celer, E. B., Luebke, R., Cairns, A. J., Staudt, R., Eddaoudi, M. and Thommes, M., "Insights on Adsorption Characterization of Metal-Organic Frameworks: A Benchmark Study on the Novel Soc-MOF," Microporous and Mesoporous Materials, 129(3), 345-353(2010). https://doi.org/10.1016/j.micromeso.2009.06.014
  13. Armstrong, M. R., Shan, B., Cheng, Z., Wang, D., Liu, J. and Mu, B., "Adsorption and Diffusion of Carbon Dioxide on the Metal-Organic Framework CuBTB," Chemical Engineering Science, 167, 10-17(2017). https://doi.org/10.1016/j.ces.2017.03.049
  14. Querejeta, N., Gil, M. V., Pevida, C. and Centeno, A. C., "Standing out the Key Role of Ultramicroporosity to Tailor BiomassDerived Carbons for CO2 Capture," Journal of CO2 Utilization, 26, 1-7(2018). https://doi.org/10.1016/j.jcou.2018.04.016
  15. Jo, D. H., Cho, K. S., Park, C. G. and Kim, S. H., "Effects of Inorganic-Organic Additives on CO2 Adsorption of Activated Carbon," Korean Chemical Engineering Research, 50(5), 885-89(2012). https://doi.org/10.9713/kcer.2012.50.5.885
  16. Bates, E. D., Mayton, R. D., Ntai, I. and Davis, J. H., "CO2 Capture by a Task-Specific Ionic Liquid," Journal of the American Chemical Society, 124(6), 926-927(2002). https://doi.org/10.1021/ja017593d
  17. Lee, K. M. and Jo, Y. M., "Ambient Adsorption of Low-Level Carbon Dioxide by Metal Treated Activated Carbon," Journal of Korean Society for Atmospheric Environment, 25(4), 316-24(2009). https://doi.org/10.5572/KOSAE.2009.25.4.316
  18. Cai, T., Chen, X., Tang, H., Zhou, W., Wu, Y. and Zhao, C., "Unraveling the Disparity of CO2 Sorption on Alkali Carbonates Under High Humidity," Journal of CO2 Utilization, 53, 101737(2021).
  19. Zhao, C., Guo, Y., Li, C. and Lu, S., "Removal of Low Concentration CO2 at Ambient Temperature Using Several Potassiumbased Sorbents," Applied Energy, 124, 241-247(2014). https://doi.org/10.1016/j.apenergy.2014.02.054
  20. Jin, H. K., "The Relationships Between the Porosity of Activated Carbon and Hydrogen Adsorption Capacity," Trans. of the Korean Hydrogen and New Energy Society, 14(4), 305-312(2003).
  21. Brennan, J. K., Thomson, K. T. and Gubbins, K. E., "Adsorption of Water in Activated Carbons: Effects of Pore Blocking and Connectivity," Langmuir, 18(14), 5438-5447(2002). https://doi.org/10.1021/la011856
  22. Qin, Q., Liu, H., Zhang, R., Ling, L., Fan, M. and Wang, B., "Application of Density Functional Theory in Studying CO2 Capture with TiO2-supported K2CO3 Being an Example," Applied Energy, 231, 167-178(2018). https://doi.org/10.1016/j.apenergy.2018.09.114
  23. Jayakumar, A., Gomez, A. and Mahinpey, N., "Post-Combustion CO2 Capture Using Solid K2CO3: Discovering the Carbonation Reaction Mechanism," Applied Energy, 179, 531-543(2016). https://doi.org/10.1016/j.apenergy.2016.06.149
  24. Gomez, A., Jayakumar, A. and Mahinpey, N., "Experimental Verification of the Reaction Mechanism of Solid K2CO3 During Postcombustion CO2 Capture," Industrial and Engineering Chemistry Research, 55(41), 11022-11028(2016). https://doi.org/10.1021/acs.iecr.6b02916
  25. Wang, S., Lee, Y. R., Won, Y. Kim, H., Jeong, S. E., Hwang, B. W., Cho, A. R., Kim J. Y., Park, Y. C., Nam, H., Lee, D. H., Kim, H. and Jo, S. H., "Development of High-Performance Adsorbent Using KOH-Impregnated Rice Husk-Based Activated Carbon for Indoor CO2 Adsorption," Chemical Engineering Journal, 437(1), 135378(2022).
  26. Lee, K. M. and Jo, Y. M. "Adsorption Characteristics of Chemically Modified Sorbents for Carbon Dioxide," Journal of the Korean Industrial and Engineering Chemistry, 19(5), 533-538(2008).
  27. Suh, S. S. and Lee, H. J., "Adsorption Characteristics of Flue Gas Components on Zeolite 13X and Effects of Impurity," Korean Chemical Engineering Research, 54(6), 838-846(2016). https://doi.org/10.9713/kcer.2016.54.6.838