DOI QR코드

DOI QR Code

Performance Evaluation of a Closed-Loop Pressure Retarded Membrane Distillation for Brackish Water Desalination and Power Generation

기수담수화와 전력 생산을 위한 폐루프형 압력 지연식 막 증류 공정의 성능 평가

  • Cho, Gyu Sang (School of Chemical Engineering, Chonnam National University) ;
  • Lee, Jun-Seo (School of Chemical Engineering, Chonnam National University) ;
  • Park, Kiho (School of Chemical Engineering, Chonnam National University)
  • 조규상 (전남대학교 화학공학부) ;
  • 이준서 (전남대학교 화학공학부) ;
  • 박기호 (전남대학교 화학공학부)
  • Received : 2022.06.28
  • Accepted : 2022.07.22
  • Published : 2022.11.01

Abstract

In this study, we investigated the applicability and optimal operating strategy of a closed-loop pressure retarded membrane distillation (PRMD) for brackish water desalination. For effective operation with net power generation, high temperature of heat source over 90 ℃ and feed flow rate at 0.6 kg/s are recommended. At 3 g/L of feed concentration, the average permeate flux and net energy density showed 8.04 kg/m2/hr and 2.56 W/m2, respectively. The average permeate flux and net energy density were almost constant in the range of feed concentration from 1 to 3 g/L. Compared to the case with seawater feed, the PRMD with brackish water feed showed higher average permeate flux and net energy density. Thus, PRMD application using brackish water feed can be more effective than that using seawater feed in terms of power generation.

본 연구에서는 물과 전기의 동시 생산이 가능한 pressure retarded membrane distillation (PRMD)의 폐루프식 구성 디자인을 기수담수화에 적용해 최적 운전 조건과 성능 평가를 수행하였다. 시뮬레이션 결과 80 ℃ 이상의 폐열이 공급될 때 순 에너지 생산량이 양수 값을 보이며 90 ℃ 이상일 때 안정적인 전력 생산이 가능한 것을 확인할 수 있었고 최적 유입수 유량은 0.6 kg/s를 나타냈다. 이 조건에서 3 g/L의 기수가 유입될 때 순 에너지 생산량은 2.56 W/m2, 물 플럭스는 8.04 kg/m2/hr의 값을 나타냈다. 기수의 농도가 1-3 g/L로 변화할 때 물 플럭스나 에너지 생산량은 큰 변화가 나타나지 않았고, 해수가 유입수로 사용될 때와 비교하면 더 높은 물 플럭스와 순 에너지 생산량을 보였다. 이를 통해 에너지 생산이라는 측면에 집중한다면 기수를 사용해서 PRMD를 운전하는 것이 더 효율적이라는 것을 확인할 수 있었다.

Keywords

Acknowledgement

본 연구는 전남대학교 화학물질 안전관리 특성화대학원((사)한국화학물질관리협회) 연구비 지원으로 수행되었으며, 지원에 감사를 드립니다.

References

  1. Li, G. and Zheng, X., "Thermal Energy Storage System Integration Forms for a Sustainable Future," Renewable and Sustainable Energy Reviews, 62, 736-757(2016). https://doi.org/10.1016/j.rser.2016.04.076
  2. Rezk, H., et al., "Fuel Cell as an Effective Energy Storage in Reverse Osmosis Desalination Plant Powered by Photovoltaic System," Energy, 175, 423-433(2019). https://doi.org/10.1016/j.energy.2019.02.167
  3. Olabi, A., et al., "Waste Heat-driven Desalination Systems: Perspective," Energy, 209, 118373(2020).
  4. Hendricks, T. and Choate, W. T., "Engineering Scoping Study of Thermoelectric Generator Systems for Industrial Waste Heat Recovery," 2006: United States. p. Medium: ED; Size: 74 p.
  5. Straub, A. P., et al., "Harvesting Low-grade Heat Energy Using Thermo-osmotic Vapour Transport Through Nanoporous Membranes," Nature Energy, 1(7), 1-6(2016).
  6. Xu, Z., Wang, R. and Yang, C., "Perspectives for Low-temperature Waste Heat Recovery," Energy, 176, 1037-1043(2019). https://doi.org/10.1016/j.energy.2019.04.001
  7. Ammar, Y., et al., "Low Grade Thermal Energy Sources and Uses from the Process Industry in the UK," Applied Energy, 89(1), 3-20(2012). https://doi.org/10.1016/j.apenergy.2011.06.003
  8. Cheng, L.-H., Wu, P.-C. and Chen, J., "Modeling and Optimization of Hollow Fiber DCMD Module for Desalination," Journal of Membrane Science, 318(1-2), 154-166(2008). https://doi.org/10.1016/j.memsci.2008.02.065
  9. Kaczmarczyk, M., Tomaszewska, B. and Bujakowski, W., "Innovative Desalination of Geothermal Wastewater Supported by Electricity Generated from Low-enthalpy Geothermal Resources," Desalination, 524, 115450(2022).
  10. Park, K., Kim, D. Y. and Yang, D. R., "Theoretical Analysis of Pressure Retarded Membrane Distillation (PRMD) Process for Simultaneous Production of Water and Electricity," Industrial & Engineering Chemistry Research, 56(50), 14888-14901(2017). https://doi.org/10.1021/acs.iecr.7b03642
  11. Yuan, Z., et al., "Pressure-retarded Membrane Distillation for Low-grade Heat Recovery: The Critical Roles of Pressure-induced Membrane Deformation," Journal of Membrane Science, 579, 90-101(2019). https://doi.org/10.1016/j.memsci.2019.02.045
  12. Lee, M. S., et al., "Energetic and Exergetic Analyses of a Closed-loop Pressure Retarded Membrane Distillation (PRMD) for Low-grade Thermal Energy Utilization and Freshwater Production," Desalination, 534, 115799(2022).
  13. Karagiannis, I. C. and Soldatos, P. G., "Water Desalination Cost Literature: Review and Assessment," Desalination, 223(1-3), 448-456(2008). https://doi.org/10.1016/j.desal.2007.02.071
  14. Ahdab, Y. D. and Lienhard, J. H., "Desalination of Brackish Groundwater to Improve Water Quality and Water Supply, in Global Groundwater," Elsevier. 559-575(2021).
  15. Gonzalez, D., Amigo, J. and Suarez, F., "Membrane Distillation: Perspectives for Sustainable and Improved Desalination," Renewable and Sustainable Energy Reviews, 80, 238-259(2017). https://doi.org/10.1016/j.rser.2017.05.078
  16. Loeb, S., "Production of Energy from Concentrated Brines by Pressure-retarded Osmosis: I. Preliminary Technical and Economic Correlations," Journal of Membrane Science, 1, 49-63(1976). https://doi.org/10.1016/S0376-7388(00)82257-7
  17. Garcia-Payo, M. d. C., Izquierdo-Gil, M. A. and FernandezPineda, C., "Wetting Study of Hydrophobic Membranes via Liquid Entry Pressure Measurements with Aqueous Alcohol Solutions," Journal of Colloid and Interface Science, 230(2), 420- 431(2000). https://doi.org/10.1006/jcis.2000.7106
  18. Curcio, E. and Drioli, E., "Membrane Distillation and Related Operations-a Review," Separation and Purification Reviews, 34(1), 35-86(2005). https://doi.org/10.1081/SPM-200054951
  19. Martinez, L. and Rodriguez-Maroto, J. M., "Membrane Thickness Reduction Effects on Direct Contact Membrane Distillation Performance," Journal of Membrane Science, 312(1-2), 143-156(2008). https://doi.org/10.1016/j.memsci.2007.12.048
  20. Moghaddam Kamrani, P., et al., "Theoretical Modeling of Direct Contact Membrane Distillation (DCMD): Effects of Operation Parameters on Flux," Desalination and Water Treatment, 56(8), 2013-2022(2015). https://doi.org/10.1080/19443994.2014.960461
  21. Iu, I., et al., "Applying the Effectiveness-NTU Method to Elemental Heat Exchanger Models," ASHRAE Transactions, 113(1), 504-513(2007).
  22. Hasan, A., "Going Below the Wet-bulb Temperature by Indirect Evaporative Cooling: Analysis Using a Modified 𝜀-NTU Method," Applied Energy, 89(1), 237-245(2012). https://doi.org/10.1016/j.apenergy.2011.07.005
  23. Politano, A., et al., "Overcoming Temperature Polarization in Membrane Distillation by Thermoplasmonic Effects Activated by Ag Nanofillers in Polymeric Membranes," Desalination, 451, 192-199(2019). https://doi.org/10.1016/j.desal.2018.03.006
  24. Schofield, R., Fane, A. and Fell, C., "Heat and Mass Transfer in Membrane Distillation," Journal of Membrane Science, 33(3), 299-313(1987). https://doi.org/10.1016/S0376-7388(00)80287-2
  25. Martinez-Díez, L. and Vazquez-Gonzalez, M. I., "Temperature and Concentration Polarization in Membrane Distillation of Aqueous Salt Solutions," Journal of Membrane Science, 156(2), 265-273(1999) https://doi.org/10.1016/S0376-7388(98)00349-4