DOI QR코드

DOI QR Code

Kinetics of CO2 Absorption in Aqueous DETA and DEEA Solutions by Wetted-Wall Column

젖은 벽탑을 이용한 디에틸렌트리아민과 디에틸에탄올아민 수용액의 CO2 흡수속도 측정

  • You, Jong Kyun (Greenhouse Gas Research Department, Korea Institute of Energy Research) ;
  • Lee, Jun (School of Chemical and Materials Engineering, Korea National University of Transportation) ;
  • Hong, Yeon Ki (School of Chemical and Materials Engineering, Korea National University of Transportation)
  • 유정균 (한국에너지기술연구원 온실가스연구단) ;
  • 이준 (한국교통대학교 응용화학에너지공학부) ;
  • 홍연기 (한국교통대학교 응용화학에너지공학부)
  • Received : 2022.06.20
  • Accepted : 2022.07.05
  • Published : 2022.11.01

Abstract

Biphasic solvents are attracting attention as energy-reducing solvents for capturing CO2 from flue gas in combustion process. In this study, considering diethylenetriamine (DETA) and diethylethanolamine (DEEA) mixed solvents, one of the biphasic solvents by blending of two types of amines, the CO2 absorption rates of DETA and DEEA was measured by wetted wall column. The effects of DETA and DEEA concentrations and operating temperature on the overall mass transfer coefficient were investigated. As a result, the overall mass transfer coefficient was proportional to the DETA concentration. However, in the case of the DEEA concentration, the effect was small and when the concentration was exceeded, the overall mass transfer coefficient decreased. The DETA aqueous solution showed little change in the overall mass transfer coefficient with the operating temperature, whereas the DEEA aqueous solution increased the overall mass transfer coefficient with the operating temperature. As a result of obtaining the observed reaction rate constant under the pseudo-first-order reaction assumption, it was found that the observed reaction rate constant in DETA aqueous solution was proportional to the DETA concentration, but DEEA did not fit the pseudo-first-order reaction assumption.

연소 배가스 중 CO2를 포집하기 위한 에너지 저감형 흡수제로 상분리 흡수제가 주목 받고 있다. 본 연구에서는 2종의 아민을 혼합한 상분리 흡수제 중 하나인 디에틸렌트리아민(diethylenetriamine, DETA)과 디에틸아미노에탄올(diethylaminoethanol, DEEA) 흡수제를 구성하는 DETA와 DEEA 각각의 흡수 속도를 측정하기 위해 젖은 벽탑을 사용하였다. 총괄 물질전달 계수에 대한 DETA 및 DEEA의 농도와 조업 온도에 따른 영향을 고찰하였다. 그 결과 DETA 농도에 따라 총괄 물질전달 계수는 비례하였지만 DEEA 농도의 경우 그 영향이 적었고 일정 농도를 넘어설 경우 총괄 물질전달 계수가 감소하였다. DETA 수용액은 조업 온도에 따라 총괄 물질전달 계수의 변화가 적었던 반면 DEEA 수용액은 조업 온도에 따라 총괄 물질전달 계수가 증가하였다. 의사 1차 반응 가정 하에서 관찰 반응 속도 상수를 구한 결과 DETA 수용액에서의 관찰 반응속도 상수는 DETA 농도에 따라 비례하는 관계를 가지나 DEEA는 의사 1차 반응 가정에 맞지 않는 것으로 나타났다.

Keywords

Acknowledgement

이 논문은 한국에너지기술연구원 2016년도 주요사업의 지원을 받아 수행된 연구임(B5-2436).

References

  1. Ochedi, F. O., Yu, J., Yu, H., Liu, Y. and Hussain, A., "Carbon Dioxide Capture Using Liquid Absorption Methods: A Review," Environmental Chemistry Letters, 19, 770109(2021).
  2. Jang, G. G., Thompson, J. A., Sun, X. and Tsouris, C., "Process Intensification of CO2 Capture by Low-aqueous Solvent," Chem. Eng. J., 426, 131240(2021).
  3. Papadopoulos, A. I., Tzirakis, F., Tsivintzelis, I. and Seferlis, P., "Phase-Change Solvents and Processes for Postcombustion CO2 Capture: A Detailed Review," Ind. Eng. Chem. Res., 58(13), 5088-5111(2019). https://doi.org/10.1021/acs.iecr.8b06279
  4. Hu, L., "Phase Transitional Absorption Method," US Patent No. 7,541,011,B2 (2009).
  5. Raynal, L., Briot, P, Dreillard, M., Broutin, P., Mangiaracina, A., Salghetti, B., Politi, M., Marca, C. L., Mertens, J., Thielens, ML., Laborie, G. and Normand, L., "Evaluation of the DMX Process for Industrial Pilot Demonstration - Methodology and Results," Energy Procedia, 63, 6298-6309(2014). https://doi.org/10.1016/j.egypro.2014.11.662
  6. Pinto, D. D. D., Zaidy, S. A. H., Hartono, A. and Svendsen, H. F., "Evaluation of a Phase Change Solvent for CO2 capture: Absorption and Desorption Tests," Int. J. GHG Control, 28, 318-327(2014).
  7. You, J. K., Lee, W. Y., Kim, J. Y. and Hong, Y. K., "Screening of Biphasic Solvents for Energy Efficient CO2 Capture," Energy Procedia, 114, 2096-2102(2017). https://doi.org/10.1016/j.egypro.2017.03.1344
  8. Lee, J., Hong, Y. K. and You, J. K., "Phase Separation Characteristics in Biphasic Solvents Based on Mutually Miscible Amines for Energy Efficient CO2 Capture," Korean J. Chem. Eng., 34(6), 1840-1845(2017). https://doi.org/10.1007/s11814-017-0067-4
  9. Danckwerts, P. V., Gas Liquid Reactions, McGraw-Hill, New York, NY (1970).
  10. Hartono, A. and Svendsen, H. F., "Density, Viscosity, and Excess Properties of Aqueous Solution of Diethylenetriamine (DETA)," J. Chem. Thermodyn., 41(9), 973-979(2009). https://doi.org/10.1016/j.jct.2008.11.012
  11. Maham, Y., Lebrette, L. and Mather, A. E., "Viscosities and Excess Properties of Aqueous Solutions of Mono- and Diethylethanolamines at Temperatures between 298.15 and 353.15 K," J. Chem. Eng. Data, 47(3), 550-553(2002). https://doi.org/10.1021/je015528d
  12. Penttila, A., Dell'Era, C., Uusi-Kyyny, P. and Alopaeus, V., "The Henry's Law Constant of N2O and CO2 in Aqueous Binary and Ternary Amine Solutions (MEA, DEA, DIPA, MDEA, and AMP)," Fluid Phase Equilibria, 311, 59-66(2011). https://doi.org/10.1016/j.fluid.2011.08.019
  13. Monteiro, J. G. M. S., Majeed, H., Knuutila, H. and Svendsen, H. F., "Kinetics of CO2 Absorption in Aqueous Blends of N,NDiethylethanolamine (DEEA) and N-Methyl-1,3-Propane-Diamine (MAPA)," Chem. Eng. Sci., 129, 145-155(2015). https://doi.org/10.1016/j.ces.2015.02.001
  14. Versteeg, G. F. and van Swaaij, W. P. M., "Solubility and Diffusivity of Acid Gases (CO, HS) in Aqueous Alkanolamine Solutions," J. Chem. Eng. Data, 33, 29-34(1988). https://doi.org/10.1021/je00051a011
  15. Hartono, A., da Silva, E. F. and Svendsen, H. F., "Kinetics of Carbon Dioxide Absorption in Aqueous Solution of Diethylenetriamine (DETA)," Chem. Eng. Sci., 64, 3205-3213(2009). https://doi.org/10.1016/j.ces.2009.04.018
  16. Monteiro, J. G. M. S, Knuutila, H., Penders-van Elk, N. J. M. C., Versteeg, G. and Svendsen, H. F., "Kinetics of CO2 Absorption by Aqueous N,N-Diethylethanolamine Solutions: Literature Review, Experimental Results and Modelling," Chem. Eng. Sci., 127, 1-12(2015). https://doi.org/10.1016/j.ces.2014.12.061