Acknowledgement
본 연구는 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구 과제입니다. (No. 20212020800120)
References
- Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A., & Arshad, H. (2018). State-of-the-art in artificial neural network applications: A survey, Heliyon, 4(11), e00938. https://doi.org/10.1016/j.heliyon.2018.e00938
- Arroyo, J., Spiessens, F., & Helsen, L. (2022). Comparison of optimal control techniques for building energy management, Frontiers in Built Environment, 8 (Artificial Intelligence Applications in Building's Thermal Management).
- Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult, IEEE Transactions on Neural Networks, 5(2), 157-166. https://doi.org/10.1109/72.279181
- Bianchini, G., Casini, M., Pepe, D., Vicino, A., & Zanvettor, G. G. (2019). An integrated model predictive control approach for optimal HVAC and energy storage operation in large-scale buildings, Applied Energy, 240, 327-340. https://doi.org/10.1016/j.apenergy.2019.01.187
- Chen, Z., & Soh, Y. C. (2017). Comparing occupancy models and data mining approaches for regular occupancy prediction in commercial buildings, Journal of Building Performance Simulation, 10(5-6), 545-553. https://doi.org/10.1080/19401493.2016.1199735
- Cho, H. U., Nam, Y., Choi, E. J., Choi, Y. J., Kim, H., Bae, S., & Moon, J. W. (2021). Comparative analysis of the optimized ANN, SVM, and tree ensemble models using bayesian optimization for predicting gshp cop, Journal of Building Engineering, 44, 103411. https://doi.org/10.1016/j.jobe.2021.103411
- Cho, K., Van Merrienboer, B., Bahdanau, D., & Bengio, Y. (2014). On the properties of neural machine translation: Encoder-decoder approaches, arXiv preprint arXiv, 1409-1259.
- Choi, Y. J., Park, B. R., Hyun, J. Y., & Moon, J. W. (2022). Development of an adaptive artificial neural network model and optimal control algorithm for a data center cyber-physical system, Building and Environment, 210, 108704. https://doi.org/10.1016/j.buildenv.2021.108704
- Hitimana, E., Bajpai, G., Musabe, R., Sibomana, L., & Kayalvizhi, J. (2021). Implementation of IoT framework with data analysis using deep learning methods for occupancy prediction in a building, Future Internet, 13(3), 67. https://doi.org/10.3390/fi13030067
- Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory, Neural Computation, 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
- Huang, W., Lin, Y., Lin, B., & Zhao, L. (2019). Modeling and predicting the occupancy in a China hub airport terminal using Wi-Fi data, Energy and Buildings, 203, 109439. https://doi.org/10.1016/j.enbuild.2019.109439
- Huchuk, B., Sanner, S., & O'Brien, W. (2019). Comparison of machine learning models for occupancy prediction in residential buildings using connected thermostat data, Building and Environment, 160, 106177. https://doi.org/10.1016/j.buildenv.2019.106177
- Jin, Y., Yan, D., Chong, A., Dong, B., & An, J. (2021). Building occupancy forecasting: A systematical and critical review, Energy and Buildings, 251, 111345. https://doi.org/10.1016/j.enbuild.2021.111345
- Kim, S., Kang, S., Ryu, K. R., & Song, G. (2019). Real-time occupancy prediction in a large exhibition hall using deep learning approach. Energy and Buildings, 199, 216-222. https://doi.org/10.1016/j.enbuild.2019.06.043
- Kim Y. J., & Park C. S. (2008). Prediction of Occupant's Presence in Residential Apartment Buildings using Markov Chain, Korean Institute of Architectural Sustainable Environment and Building Systems Conference, 116-121.
- Luo, N., Wang, Z., Blum, D., Weyandt, C., Bourassa, N., Piette, M. A., & Hong, T. (2022). A three-year dataset supporting research on building energy management and occupancy analytics, Scientific Data, 9(1), 1-15. https://doi.org/10.1038/s41597-021-01104-5
- Ohsugi, S., & Koshizuka, N. (2018). Delivery route optimization through occupancy prediction from electricity usage, In 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC) IEEE, 1, 842-849.
- Panchabikesan, K., Haghighat, F., & El Mankibi, M. (2021). Data driven occupancy information for energy simulation and energy use assessment in residential buildings, Energy, 218, 119539. https://doi.org/10.1016/j.energy.2020.119539
- Peng, Y., Rysanek, A., Nagy, Z., & Schluter, A. (2017). Occupancy learning-based demand-driven cooling control for office spaces, Building and Environment, 122, 145-160. https://doi.org/10.1016/j.buildenv.2017.06.010
- Sangogboye, F. C., Arendt, K., Singh, A., Veje, C. T., Kjaergaard, M. B., & Jorgensen, B. N. (2017). Performance comparison of occupancy count estimation and prediction with common versus dedicated sensors for building model predictive control, Building Simulation, 10(6), 829-843. https://doi.org/10.1007/s12273-017-0397-5
- Schiele, J., Koperna, T., & Brunner, J. O. (2021). Predicting intensive care unit bed occupancy for integrated operating room scheduling via neural networks, Naval Research Logistics (NRL), 68(1), 65-88. https://doi.org/10.1002/nav.21929
- Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical bayesian optimization of machine learning algorithms, Advances in Neural Information Processing Systems, 25.
- Song, D. (2021). Green Remodeling for Carbon Neutrality in the Building Sector, Review of Architecture and Building Science, 65(6), 27-30.