Acknowledgement
본 연구는 2022년도 국토교통과학기술진흥원 연구비 지원에 의한 결과의 일부임 (과제번호: 22TBIP-C161839-02).
References
- Asad, H., Johnston, C., Blyth, I., Holborow, A., Bone, A., Porter, L., Tidswell, P., & Healy, B. (2020). Health care workers and patients as Trojan horses: a COVID19 ward outbreak, Infection Prevention in Practice, 2(3), 100073. https://doi.org/10.1016/j.infpip.2020.100073
- CDC (1994). Guidelines for preventing the transmission of mycobacterium tuberculosis in health-care facilities 59(208), US Department of Health and Human Services, Public Health Services, Federal Register.
- Cho, J. (2019). Investigation on the contaminant distribution with improved ventilation system in hospital isolation rooms: Effect of supply and exhaust air diffuser configurations, Applied Thermal Engineering, 148, 208-218. https://doi.org/10.1016/j.applthermaleng.2018.11.023
- Cho, J., Kim, J., & Kim, Y. (2022). Development of a non-contact mobile screening center for infectious diseases: effects of ventilation improvement on aerosol transmission prevention, Sustainable Cities and Society, 87, 104232. https://doi.org/10.1016/j.scs.2022.104232
- Cho, J., Woo, K., & Kang, H. (2019). Experimental study of an AIIR ventilation system for effective removal of airborne contamination in hospitals, Journal of the Architectural Institute of Korea, 33(03), 85-90.
- Cole, E.C., & Cook, C.E. (1998). Characterization of infectious aerosols in health care facilities: an aid to effective engineering controls and preventive strategies, American Journal of Infection Control, 26(4), 453-464. https://doi.org/10.1016/S0196-6553(98)70046-X
- El Hassan, M., Assoum, H., Bukharin, N., Al Otaibi, H., Mofijur, M., & Sakout, A. (2022). A review on the transmission of COVID-19 based on cough/sneeze/breath flows, European physical journal plus, 137(1), 1.
- Fennelly, K.P. (2020). Particle sizes of infectious aerosols: Implications for infection control, The Lancet Respiratory Medicine, 8(9), 914-924. https://doi.org/10.1016/S2213-2600(20)30323-4
- Grifn, K.M., Karas, M.G., Ivascu, N.S., & Lief, L. (2020). Hospital preparedness for COVID-19: a practical guide from a critical care perspective, American Journal of Respiratory and Critical Care Medicine, 201, 1337-1344. https://doi.org/10.1164/rccm.202004-1037CP
- Gupta, J.K., Lin, C.H., & Chen, Q. (2009). Flow dynamics and characterization of a cough, Indoor Air, 19, 517-525. https://doi.org/10.1111/j.1600-0668.2009.00619.x
- Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y. et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, The Lancet, 395, 497-506. https://doi.org/10.1016/S0140-6736(20)30183-5
- Jung, M., Han, S.H., Yoo, S.H., Lee, J., & Hong, J.K. (2021). A CFD simulation of a negative pressurized medical container for COVID-19 testing, Korean Journal of Air-Conditioning and Refrigeration Engineering, 33(2), 72-79. https://doi.org/10.6110/KJACR.2021.33.2.072
- KDCA (2020). Guidelines for the operation of COVID-19 Screening Clinics, Korea Disease Control and Prevention Agency, Cheongju, Korea.
- Kim, J.E., Lee, J.H., Lee, H., Moon, S.J., & Nam, E.W. (2021). COVID-19 screening center models in South Korea, Journal of Public Health Policy, 42, 15-26. https://doi.org/10.1057/s41271-020-00258-7
- Kwon, S.B., Park, J.H., Jang, J.Y., Cho, Y.M., Park, D.S., Kim, C.S., Bae, G.N., & Jang, A. (2012). Study on the initial velocity distribution of exhaled air from coughing and speaking, Chemosphere, 87(11), 1260-1264. https://doi.org/10.1016/j.chemosphere.2012.01.032
- Mirzaie, M., Lakzian, E., Khan, A., Warkiani, M.E., Mahian, O., & Ahmadi, G. (2021). COVID-19 spread in a classroom equipped with partition: A CFD approach, Journal of Hazardous Materials, 420, 126587. https://doi.org/10.1016/j.jhazmat.2021.126587
- Noor, R., & Maniha, S.M. (2020). A brief outline of respiratory viral disease outbreaks: 1889-till date on the public health perspectives, Virusdisease, 31(4), 441-449. https://doi.org/10.1007/s13337-020-00628-5
- Prather, K.A., Marr, L.C., Schooley, R.T., McDiarmid, M.A., Wilson, M.E., & Milton, D.K., (2020). Airborne transmission of SARS-CoV-2. Science, 370, 303-304.
- Redrow, J., Mao, S.L., Celik, I., Posada, J.A., & Feng, Z.G. (2011). Modeling the evaporation and dispersion of airborne sputum droplets expelled from a human cough, Building and Environment, 46(10), 2042-2051. https://doi.org/10.1016/j.buildenv.2011.04.011
- Shi, P., Dong, Y., Yanc, H., Zhao, C., Li, X., Liu, W., Hea, M., Tang, S., & Xi, S. (2020). Impact of temperature on the dynamics of the COVID-19 outbreak in China, Science of The Total Environment, 728, 138890. https://doi.org/10.1016/j.scitotenv.2020.138890
- Siegel, J.D., Rhinehart, E., Jackson, M., & Chiarello, L. (2007). Guideline for isolation precautions: preventing transmission of infectious agents in healthcare settings, the Healthcare Infection Control Practices Advisory Committee (HICPAC).
- Stokes, J.R., & Davies, G.A. (2007). Viscoelasticity of human whole saliva collected after acid and mechanical stimulation, Biorheology 44(3), 141-160.
- Suvanjan, B., Kunal, D., Akshoy, R.P., & Ranjib, B. (2020). A novel CFD analysis to minimize the spread of COVID-19 virus in hospital isolation room, Chaos Solitons & Fractals, 139, 110294. https://doi.org/10.1016/j.chaos.2020.110294
- Tang, J.W., Eames, I., Li, Y., Taha, Y.A. Wilson, P., Bellingan, G., Ward, K.N., & Breuer, J. (2005). Door-opening motion can potentially lead to a transient breakdown in negative-pressure isolation conditions: the importance of vorticity and buoyancy airflows, Journal of Hospital Infection, 61(4), 283-286. https://doi.org/10.1016/j.jhin.2005.05.017
- Xie, J., & Zhu, Y. (2020). Association between ambient temperature and COVID-19 infection in 122 cities from China, Science of The Total Environment, 724, 138201. https://doi.org/10.1016/j.scitotenv.2020.138201