DOI QR코드

DOI QR Code

DNN-Based Dynamic Cell Selection and Transmit Power Allocation Scheme for Energy Efficiency Heterogeneous Mobile Communication Networks

이기종 이동통신 네트워크에서 에너지 효율화를 위한 DNN 기반 동적 셀 선택과 송신 전력 할당 기법

  • Kim, Donghyeon (School of Electronic and Electrical Engineering, Hankyong National University) ;
  • Lee, In-Ho (School of Electronic and Electrical Engineering, and Research Center for Hyper-Connected Convergence Technology, Hankyong National University)
  • Received : 2022.08.25
  • Accepted : 2022.09.09
  • Published : 2022.10.31

Abstract

In this paper, we consider a heterogeneous network (HetNet) consisting of one macro base station and multiple small base stations, and assume the coordinated multi-point transmission between the base stations. In addition, we assume that the channel between the base station and the user consists of path loss and Rayleigh fading. Under these assumptions, we present the energy efficiency (EE) achievable by the user for a given base station and we formulate an optimization problem of dynamic cell selection and transmit power allocation to maximize the total EE of the HetNet. In this paper, we propose an unsupervised deep learning method to solve the optimization problem. The proposed deep learning-based scheme can provide high EE while having low complexity compared to the conventional iterative convergence methods. Through the simulation, we show that the proposed dynamic cell selection scheme provides higher EE performance than the maximum signal-to-interference-plus-noise ratio scheme and the Lagrangian dual decomposition scheme, and the proposed transmit power allocation scheme provides the similar performance to the trust region interior point method which can achieve the maximum EE.

본 논문에서는 하나의 매크로 기지국과 다수의 소형 기지국들로 구성된 이기종 네트워크를 고려하고, 그 기지국들간 협력적 다중 포인트 전송을 가정한다. 또한, 기지국과 단말간 채널은 경로 손실과 레일레이 페이딩으로 구성된다고 가정한다. 이러한 가정에서 주어진 기지국에 대해 단말이 달성할 수 있는 에너지 효율을 제시하고, 이기종 네트워크의 총 에너지 효율을 최대화하기 위한 동적 셀 선택과 송신 전력 할당의 최적화 문제를 공식화한다. 본 논문에서는 최적화 문제를 해결하기 위하여 비지도 딥러닝 기법을 제안한다. 제안된 딥러닝 기법은 기존의 반복적 수렴 방식의 기법들에 비해서 낮은 복잡도를 갖는 동시에 높은 에너지 효율을 제공하는 것이 가능하다. 시뮬레이션을 통해서 제안된 동적 셀 선택 기법이 최대 신호 대 간섭 및 잡음비 기법과 Lagrangian dual decomposition 기법 보다 높은 에너지 효율 성능을 제공함을 보여주고, 제안된 송신 전력 할당 기법은 최대 에너지 효율을 달성할 수 있는 trust region interior point 기법과 유사한 성능을 제공함을 보여준다.

Keywords

Acknowledgement

This research was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (Grant number: NRF-2022R1A2C1003388).

References

  1. N. Yang, H. Zhang, K. Long, H. Hsieh, and J. Liu, "Deep Neural Network for Resource Management in NOMA Networks," IEEE Transactions on Vehicular Technology, vol. 69, no. 1, pp. 876-886, Jan. 2020. https://doi.org/10.1109/TVT.2019.2951822
  2. H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos, "Learning to Optimize: Training Deep Neural Networks for Interference Management," IEEE Transactions on Signal Processing, vol. 66, no. 20, pp. 5438-5453, Oct. 2018. https://doi.org/10.1109/TSP.2018.2866382
  3. K. N. Doan, M. Vaezi, W. Shin, H. V. Poor, H. Shin, and T. Q. S. Quek, "Power Allocation in Cache-Aided NOMA Systems: Optimization and Deep Reinforcement Learning Approaches," IEEE Transactions on Communications, vol. 68, no. 1, pp. 630-644, Jan. 2020. https://doi.org/10.1109/TCOMM.2019.2947418
  4. Y. S. Nasir and D. Guo, "Multi-Agent Deep Reinforcement Learning for Dynamic Power Allocation in Wireless Networks," IEEE Journal on Selected Areas in Communications, vol. 37, no. 10, pp. 2239-2250, Oct. 2019. https://doi.org/10.1109/JSAC.2019.2933973
  5. D. Kim, H. Jung, and I. -H. Lee, "Deep Learning-Based Power Control Scheme With Partial Channel Information in Overlay Device-to-Device Communication Systems," IEEE Access, vol. 9, pp. 122125-122137, Sep. 2021. https://doi.org/10.1109/ACCESS.2021.3109948
  6. W. Lee and R. Schober, "Deep Learning-Based Resource Allocation for Device-to-Device Communication," IEEE Transactions on Wireless Communications, vol. 21, no. 7, pp. 5235-5250, Jul. 2022. https://doi.org/10.1109/TWC.2021.3138733
  7. Q. Ye, B. Rong, Y. Chen, M. Al-Shalash, C. Caramanis, and J. G. Andrews, "User Association for Load Balancing in Heterogeneous Cellular Networks," IEEE Transactions on Wireless Communications, vol. 12, no. 6, pp. 2706-2716, Jun. 2013. https://doi.org/10.1109/TWC.2013.040413.120676
  8. K. M. S. Huq, S. Mumtaz, J. Bachmatiuk, J. Rodriguez, X. Wang, and R. L. Aguiar, "Green HetNet CoMP: Energy Efficiency Analysis and Optimization," IEEE Transactions on Vehicular Technology, vol. 64, no. 10, pp. 4670-4683, Oct. 2015. https://doi.org/10.1109/TVT.2014.2371331
  9. D. Kim and I. -H. Lee, "User Association and Power Allocation Scheme Using Deep Learning Algorithmin Non-Orthogonal Multiple Access Based Heterogeneous Networks," Journal of the Korea Institute of Information and Communication Engineering, vol. 26, no. 3, pp. 430- 435, Mar. 2022. https://doi.org/10.6109/JKIICE.2022.26.3.430
  10. H. Zhang, S. Huang, C. Jiang, K. Long, V. C. M. Leung, and H. V. Poor, "Energy Efficient User Association and Power Allocation in Millimeter-Wave-Based Ultra Dense Networks With Energy Harvesting Base Stations," IEEE Journal on Selected Areas in Communications, vol. 35, no. 9, pp. 1936-1947, Sep. 2017. https://doi.org/10.1109/JSAC.2017.2720898
  11. R. H. Byrd, M. E. Hribar, and J. Nocedal, "An Interior Point Algorithm for Large-Scale Nonlinear Programming," SIAM Journal on Optimization, vol. 9, no. 4, pp. 877-900, Sep. 1999. https://doi.org/10.1137/S1052623497325107
  12. U. F. Siddiqi, S. M. Sait, and M. Uysal, "Deep Reinforcement Based Power Allocation for the Max-Min Optimization in Non-Orthogonal Multiple Access," IEEE Access, vol. 8, pp. 211235-211247, Nov. 2020. https://doi.org/10.1109/ACCESS.2020.3038923
  13. X. Huang, S. Liu, Y. Li, F. Zhu, and Q. Chen, "Dynamic cell selection and resource allocation in cognitive small cell networks," in Proceedings of the 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Valencia, Spain, pp. 1-6, 2016.
  14. A. Kroah and J. A. Hertz, "A simple weight decay can improve generalization," in Proceedings of the Advances in Neural Information Processing, Denver: CO, USA, pp. 951-957, 1991.
  15. S. Ioffe and C. Szegedy, "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift," in Proceedings of the 32nd International Conference on Machine Learning, Lille, France, pp. 448-456, 2015.
  16. D. P. Kingma and J. Ba. (2014, December). Adam: a method for stochastic optimization [Internet]. Available: http://arxiv.org/abs/1412.6980.