References
- Addou, F.Y., Meradjah, M., Bousahla, A.A., Benachour, A., Bourada, F., Tounsi, A. and Mahmoud, S.R. (2019), "Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete, Int. J., 24(4), 347-367. https://doi.org/10.12989/cac.2019.24.4.347
- Ait Atmane, H., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2015), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., Int. J., 19(2), 369-384. https://doi.org/10.12989/scs.2015.19.2.369
- Ait Atmane, R., Mahmoudi, N. and Bennai, R., Ait Atmane, H. and Tounsi, A. (2021), "Investigation on the dynamic response of porous FGM beams resting on variable foundation using a new higher order shear deformation theory", Steel Compos. Struct., Int. J., 39(1), 95-107. https://doi.org/10.12989/scs.2021.39.1.095
- Akavci, S.S. (2015), "An efficient shear deformation theory for free vibration of functionally graded thick rectangular plates on elastic foundation", Compos. Struct., 108, 667-676. https://doi.org/10.1016/j.compstruct.2013.10.019
- Al Khateeb, S.A. and Zenkour, A.M. (2014), "A refined fourunknown plate theory for advanced plates restingon elastic foundations in hygrothermal environment", Compos. Struct., 111, 240-248. https://doi.org/10.1016/j.compstruct.2013.12.033
- Arefi, M. and Zenkour, A.M. (2017), ''Wave propagation analysis of a functionally graded magneto-electro-elastic nanobeam rest on Visco-Pasternak foundation'', Mech. Res. Commun., 79, 51-62. http://dx.doi.org/10.1016/j.mechrescom.2017.01.004
- Ayache, B., Bennai, R., Fahsi, B., Fourn, H., Atmane, H.A. and Tounsi, A. (2018), "Analysis of wave propagation and free vibration of functionally graded porous material beam with a novel four variable refined theory", Earthq. Struct., Int. J., 15(4), 369-382. https://doi.org/10.12989/eas.2018.15.4.369
- Baferani, A.H., Saidi, A.R. and Ehteshami, H. (2011), "Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation", Compos. Struct., 93(7), 1842-1853. https://doi.org/10.1016/j.compstruct.2011.01.020
- Bateni, M., Kiani, Y. and Eslami, M.R. (2013), "A comprehensive study on stability of FGM plates", Int. J. Mech. Sci., 75, 134-144. https://doi.org/10.1016/j.ijmecsci.2013.05.014
- Benadouda, M., Atmane, H.A., Tounsi, A., Bernard, F. and Mohmoud, S. (2017), "An efficient shear deformation theory for wave propagation in functionally graded material beams with porosities", Earthq. Struct., Int. J., 13(3), 255-265. https://doi.org/10.12989/eas.2017.13.3.255
- Benahmed, A., Houari, M.S.A., Benyoucef, S., Belakhdar, K. and Tounsi, A. (2017), ''A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation'', Geomech. Eng., Int. J., 12(1), 9-34. https://doi.org/10.12989/gae.2017.12.1.009
- Bennai, R., Fourn, H., Ait Atmane, H., Tounsi, A. and Bessaim, A. (2019), "Dynamic and wave propagation investigation of FGM plates with porosities using a four variable plate theory", Wind Struct., Int. J., 28(1), 49-62. https://doi.org/10.12989/was.2019.28.1.049
- Boukhari, A., Atmane, H.A., Tounsi, A., Adda, B. and Mahmoud, S. (2016), "An efficient shear deformation theory for wave propagation of functionally graded material plates", Struct. Eng. Mech., Int. J., 57(5), 837-859. https://doi.org/10.12989/sem.2016.57.5.837
- Cinefra, M., Belouettar, S., Soave, M. and Carrera, E. (2010), ''Variable kinematic models applied to free-vibration analysis of functionally graded material shells'', Eur. J. Mech. - A/Solids, 29(6), 1078-1087. https://doi.org/10.1016/j.euromechsol.2010.06.001
- Dash, S., Mehar, K., Sharma, N., Mahapatra, T.R. and Panda, S.K. (2019), "Finite element solution of stress and flexural strength of functionally graded doubly curved sandwich shell panel", Earthq. Struct., Int. J,, 16(1), 55-67. https://doi.org/10.12989/eas.2019.16.1.055
- Frahlia, H., Bennai, R., Nebab, M., Ait Atmane, H. and Tounsi, A. (2022), "Assessing effects of parameters of viscoelastic foundation on the dynamic response of functionally graded plates using a novel HSDT theory", Mech. Adv. Mater. Struct., 1-15. https://doi.org/10.1080/15376494.2022.2062632
- He, X.Q., Ng, T.Y., Sivashanker, S. and Liew, K.M. (2001), ''Active control of FGM plates with integrated piezoelectric sensors and actuators'', Int. J. Solids Struct., 38(9), 1641-1655.https://doi.org/10.1016/S0020-7683(00)00050-0
- Jafari, P. and Kiani, Y. (2021), "Free vibration of functionally graded graphene platelet reinforced plates: A quasi 3D shear and normal deformable plate model", Compos. Struct., 275, 114409. https://doi.org/10.1016/j.compstruct.2021.114409
- Jafari, P. and Kiani, Y. (2022), "Analysis of Arbitrary Thick Graphene Platelet Reinforced Composite Plates Subjected to Moving Load using a Shear and Normal Deformable Plate Model", Mater. Today Commun., p. 103745. https://doi.org/10.1016/j.mtcomm.2022.103745
- Kar, V.R. and Panda, S.K. (2015a), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., Int. J., 18(3), 693-709. https://doi.org/10.12989/scs.2015.18.3.693
- Kar, V.R. and Panda, S.K. (2015b), "Large deformation bending analysis of functionally graded spherical shell using FEM", Struct. Eng. Mech., Int. J., 53(4), 661-679. https://doi.org/10.12989/sem.2015.53.4.661
- Kar, V.R. and Panda, S.K. (2015c), "Free vibration responses of temperature dependent functionally graded curved panels under thermal environment", Latin Am. J. Solids Struct., 12, 2006-2024. https://doi.org/10.1590/1679-78251691
- Kar, V.R. and Panda, S.K. (2015d), "Thermoelastic analysis of functionally graded doubly curved shell panels using nonlinear finite element method", Compos. Struct., 129, 202-212. https://doi.org/10.1016/j.compstruct.2015.04.006
- Kar, V.R. and Panda, S.K. (2016a), "Nonlinear thermo mechanical deformation behaviour of P-FGM shallow spherical shell panel", Chinese J. Aeronaut., 29(1), 173-183. https://doi.org/10.1016/j.cja.2015.12.007
- Kar, V.R. and Panda, S.K. (2016b), "Nonlinear thermomechanical behavior of functionally graded material cylindrical/hyperbolic/elliptical shell panel with temperature-dependent and temperature-independent properties", J. Press. Vessel Technol., 138(6), 061202. https://doi.org/10.1115/1.4033701
- Kar, V.R. and Panda, S.K. (2016c), "Post-buckling behaviour of shear deformable functionally graded curved shell panel under edge compression", Int. J. Mech Sci., 115, 318-324. https://doi.org/10.1016/j.ijmecsci.2016.07.014
- Kar, V.R. and Panda, S.K. (2016d), "Geometrical nonlinear free vibration analysis of FGM spherical panel under nonlinear thermal loading with TD and TID properties", J. Thermal Stress., 39(8), 942-959. https://doi.org/10.1080/01495739.2016.1188623
- Kar, V.R. and Panda, S.K. (2016e), "Nonlinear free vibration of functionally graded doubly curved shear deformable panels using finite element method", J. Vib. Control, 22(7), 1935-1949. https://doi.org/10.1177/1077546314545102
- Kar, V.R. and Panda, S.K. (2017a), "Post buckling analysis of shear deformable FG shallow spherical shell panel under non uniform thermal environment", J. Thermal Stress., 40(1), 25-39. https://doi.org/10.1080/01495739.2016.1207118
- Kar, V.R. and Panda, S.K. (2017b), "Large-amplitude vibration of functionally graded doubly-curved panels under heat conduction", AIAA J, 55(12), 4376-4386. https://doi.org/10.2514/1.J055878
- Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2015), "Nonlinear flexural analysis of laminated composite flat panel under hygrothermo-mechanical loading", Steel Compos. Struct., Int. J., 19(4), 1011-1033. https://doi.org/10.12989/scs.2015.19.4.1011
- Kar, V.R., Panda, S.K. and Mahapatra, T.R. (2016), "Thermal buckling behaviour of shear deformable functionally graded single/doubly curved shell panel with TD and TID properties", Adv. Mater. Res., Int. J., 5(4), 205-221. https://doi.org/10.12989/amr.2016.5.4.205
- Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2017), "Effect of different temperature load on thermal postbuckling behaviour of functionally graded shallow curved shell panels", Compos. Struct., 160, 1236-1247. https://doi.org/10.1016/j.compstruct.2016.10.125
- Kiani, Y. (2018), "Thermal post-buckling of temperature dependent sandwich plates with FG-CNTRC faces sheets", J. Thermal Stress., 41(7), 866-882. https://doi.org/10.1080/01495739.2018.1425645
- Kiani, Y. (2020), "NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates. J. Thermal Stress., 43(1), 90-108. https://doi.org/10.1080/01495739.2019.1673687
- Koizumi, M. (1993), "The Stability of Cylindrical Shells Containing an FGM Layer Subjected to Axial Load on the Pasternak Foundation, The concept of FGM", Ceram. Trans. Func. Grad. Mater., 34, 3-10.
- Kolahchi, R., Safari, M. and Esmailpour, M. (2016), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023
- Liang, X., Wang, Z., Wang, L. and Liu, G. (2014), "Semianalytical solution for three-dimensional transient response of functionally graded annular plate on a two parameter viscoelastic foundation", J. Sound Vib., 333(12), 2649-2663. https://doi.org/10.1016/j.jsv.2014.01.021
- Mahamood, R.M., Akinlabi, E.T., Shukla, M. and Pityana, S.L. (2012), "Functionally graded material: an overview", Proceedings of the World Congress on Engineering 2012, Vol III, London, UK.
- Mehar, K., Panda, S.K., Dehengia, A. and Kar, V.R. (2016), "Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment", J. Sandw. Struct. Mater., 18(2), 151-173. https://doi.org/10.1177%2F1099636215613324 https://doi.org/10.1177%2F1099636215613324
- Mehar, K., Panda, S.K., Devarajan, Y. and Choubey, G. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct, 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002
- Mehar, K., Panda, S.K. and Sharma, N. (2020), "Numerical investigation and experimental verification of thermal frequency of carbon nanotube-reinforced sandwich structure", Eng. Struct., 211, 110444. https://doi.org/10.1016/j.engstruct.2020.110444
- Nebab, M., Atmane, H.A., Bennai, R., Tounsi, A. and Bedia, E. (2019a), ''Vibration response and wave propagation in FG plates resting on elastic foundations using HSDT'', Struct. Eng. Mech., Int. J., 69(5), 511-525. https://doi.org/10.12989/sem.2019.69.5.511
- Nebab, M., Ait Atmane, H., Bennai, R. and Tahar, B. (2019b), ''Effect of nonlinear elastic foundations on dynamic behavior of FG plates using four-unknown plate theory'', Earthq. Struct., Int. J., 17(5), 447-462. https://doi.org/10.12989/eas.2019.17.5.447
- Nebab, M., Ait Atmane, H., Bennai, R. and Tounsi, A. (2019c), ''Effect of variable elastic foundations on static behavior of functionally graded plates using sinusoidal shear deformation'', Arab. J. Geosci., 12(24), 809. https://doi.org/10.1007/s12517-019-4871-5
- Qian, L.F., Batra, R.C. and Chen, L.M. (2004), ''Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method'', Compos. Part B: Eng., 35(6-8), 685-697. https://doi.org/10.1016/j.compositesb.2004.02.004
- Ramji, K., Kar, V.R., Panda, S.K. and Pandey, H.K. (2018), "Numerical study of temperature dependent eigenfrequency responses of tilted functionally graded shallow shell structures. Struct. Eng. Mech., Int. J., 68(5), 527-536. https://doi.org/10.12989/sem.2018.68.5.527
- Ramteke, P.M., Panda, S.K. and Sharma, N. (2019), "Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure", Steel Compos. Struct., Int. J., 33(6), 865-875. https://doi.org/10.12989/scs.2019.33.6.865
- Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47, 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8
- Shahsavari, D., Karami, B., Fahham, H.R. and Li, L. (2018), "On the shear buckling of porous nanoplates using a new sizedependent quasi-3D shear deformation theory", Acta Mechanica, 229(11), 4549-4573. https://doi.org/10.1007/s00707-018-2247-7
- Simsek, M. (2014), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nuclear Eng. Des., 240(4), 697-705. https://doi.org/10.1016/j.nucengdes.2009.12.013
- Tan, P., Nguyen-Thanh, N., Rabczuk, T. and Zhou, K. (2018), ''Static, dynamic and buckling analyses of 3D FGM plates and shells via an isogeometric-meshfree coupling approach'', Compos. Struct., 198, 35-50. https://doi.org/10.1016/j.compstruct.2018.05.012
- Viola, E., Tornabene, F. and Fantuzzi, N. (2013), ''General higherorder shear deformation theories for the free vibration analysis of completely doubly-curved laminated shells and panels'', Compos. Struct., 95, 639-666. https://doi.org/10.1016/j.compstruct.2012.08.005
- Yang, B., Ding, H.J. and Chen, W.Q. (2012), "Elasticity solutions for functionally graded rectangular plates with two opposite edges simply supported", Appl. Mathe. Modell., 36(1), 488-503. https://doi.org/10.1016/j.apm.2011.07.020
- Yousfi, M., Atmane, H.A., Meradjah, M., Tounsi, A. and Bennai, R. (2018), "Free vibration of FGM plates with porosity by a shear deformation theory with four variables", Struct. Eng. Mech., Int. J., 66(3), 353-368. https://doi.org/10.12989/sem.2018.66.3.353
- Zenkour, A.M. (2006), "Generalized shear deformation theory for bending analysis of functionally graded plates", Appl. Math. Model., 30(1), 67-84. https://doi.org/10.1016/j.apm.2005.03.009