DOI QR코드

DOI QR Code

On the wave dispersion and vibration characteristics of FG plates resting on elastic Kerr foundations via HSDT

  • Bennai, Riadh (Department of Civil Engineering, Faculty of Civil Engineering and Architecture, University Hassiba Benbouali of Chlef) ;
  • Fourn, Hocine (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Nebab, Mokhtar (Laboratory of Structures, Geotechnics and Risks, Department of Civil Engineering, Hassiba Benbouali University of Chlef) ;
  • Atmane, Redhwane Ait (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Mellal, Fatma (Laboratory of Structures, Geotechnics and Risks, Department of Civil Engineering, Hassiba Benbouali University of Chlef) ;
  • Atmane, Hassen Ait (Department of Civil Engineering, Faculty of Civil Engineering and Architecture, University Hassiba Benbouali of Chlef) ;
  • Benadouda, Mourad (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Touns, Abdelouahed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
  • Received : 2020.03.25
  • Accepted : 2022.10.05
  • Published : 2022.09.25

Abstract

In this article, vibrational behavior and wave propagation characteristics in (FG) functionally graded plates resting on Kerr foundation with three parameters is studied using a 2D dimensional (HSDT) higher shear deformation theory. The new 2D higher shear deformation theory has only four variables in field's displacement, which means has few numbers of unknowns compared with others theories. The shape function used in this theory satisfies the nullity conditions of the shear stresses on the two surfaces of the FG plate without using shear correction factors. The FG plates are considered to rest on the Kerr layer, which is interconnected with a Pasternak-Kerr shear layer. The FG plate is materially inhomogeneous. The material properties are supposed to vary smoothly according to the thickness of the plate by a Voigt's power mixing law of the volume fraction. The equations of motion due to the dynamics of the plate resting on a three-parameter foundation are derived using the principle of minimization of energies; which are then solved analytically by the Navier technique to find the vibratory characteristics of a simply supported plate, and the wave propagation results are derived by using the dispersion relations. Perceivable numerical results are fulfilled to evaluate the vibratory and the wave propagation characteristics in functionally graded plates and some parameters such wave number, thickness ratio, power index and foundation parameters are discussed in detail.

Keywords

References

  1. Addou, F.Y., Meradjah, M., Bousahla, A.A., Benachour, A., Bourada, F., Tounsi, A. and Mahmoud, S.R. (2019), "Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete, Int. J., 24(4), 347-367. https://doi.org/10.12989/cac.2019.24.4.347
  2. Ait Atmane, H., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2015), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., Int. J., 19(2), 369-384. https://doi.org/10.12989/scs.2015.19.2.369
  3. Ait Atmane, R., Mahmoudi, N. and Bennai, R., Ait Atmane, H. and Tounsi, A. (2021), "Investigation on the dynamic response of porous FGM beams resting on variable foundation using a new higher order shear deformation theory", Steel Compos. Struct., Int. J., 39(1), 95-107. https://doi.org/10.12989/scs.2021.39.1.095
  4. Akavci, S.S. (2015), "An efficient shear deformation theory for free vibration of functionally graded thick rectangular plates on elastic foundation", Compos. Struct., 108, 667-676. https://doi.org/10.1016/j.compstruct.2013.10.019
  5. Al Khateeb, S.A. and Zenkour, A.M. (2014), "A refined fourunknown plate theory for advanced plates restingon elastic foundations in hygrothermal environment", Compos. Struct., 111, 240-248. https://doi.org/10.1016/j.compstruct.2013.12.033
  6. Arefi, M. and Zenkour, A.M. (2017), ''Wave propagation analysis of a functionally graded magneto-electro-elastic nanobeam rest on Visco-Pasternak foundation'', Mech. Res. Commun., 79, 51-62. http://dx.doi.org/10.1016/j.mechrescom.2017.01.004
  7. Ayache, B., Bennai, R., Fahsi, B., Fourn, H., Atmane, H.A. and Tounsi, A. (2018), "Analysis of wave propagation and free vibration of functionally graded porous material beam with a novel four variable refined theory", Earthq. Struct., Int. J., 15(4), 369-382. https://doi.org/10.12989/eas.2018.15.4.369
  8. Baferani, A.H., Saidi, A.R. and Ehteshami, H. (2011), "Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation", Compos. Struct., 93(7), 1842-1853. https://doi.org/10.1016/j.compstruct.2011.01.020
  9. Bateni, M., Kiani, Y. and Eslami, M.R. (2013), "A comprehensive study on stability of FGM plates", Int. J. Mech. Sci., 75, 134-144. https://doi.org/10.1016/j.ijmecsci.2013.05.014
  10. Benadouda, M., Atmane, H.A., Tounsi, A., Bernard, F. and Mohmoud, S. (2017), "An efficient shear deformation theory for wave propagation in functionally graded material beams with porosities", Earthq. Struct., Int. J., 13(3), 255-265. https://doi.org/10.12989/eas.2017.13.3.255
  11. Benahmed, A., Houari, M.S.A., Benyoucef, S., Belakhdar, K. and Tounsi, A. (2017), ''A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation'', Geomech. Eng., Int. J., 12(1), 9-34. https://doi.org/10.12989/gae.2017.12.1.009
  12. Bennai, R., Fourn, H., Ait Atmane, H., Tounsi, A. and Bessaim, A. (2019), "Dynamic and wave propagation investigation of FGM plates with porosities using a four variable plate theory", Wind Struct., Int. J., 28(1), 49-62. https://doi.org/10.12989/was.2019.28.1.049
  13. Boukhari, A., Atmane, H.A., Tounsi, A., Adda, B. and Mahmoud, S. (2016), "An efficient shear deformation theory for wave propagation of functionally graded material plates", Struct. Eng. Mech., Int. J., 57(5), 837-859. https://doi.org/10.12989/sem.2016.57.5.837
  14. Cinefra, M., Belouettar, S., Soave, M. and Carrera, E. (2010), ''Variable kinematic models applied to free-vibration analysis of functionally graded material shells'', Eur. J. Mech. - A/Solids, 29(6), 1078-1087. https://doi.org/10.1016/j.euromechsol.2010.06.001
  15. Dash, S., Mehar, K., Sharma, N., Mahapatra, T.R. and Panda, S.K. (2019), "Finite element solution of stress and flexural strength of functionally graded doubly curved sandwich shell panel", Earthq. Struct., Int. J,, 16(1), 55-67. https://doi.org/10.12989/eas.2019.16.1.055
  16. Frahlia, H., Bennai, R., Nebab, M., Ait Atmane, H. and Tounsi, A. (2022), "Assessing effects of parameters of viscoelastic foundation on the dynamic response of functionally graded plates using a novel HSDT theory", Mech. Adv. Mater. Struct., 1-15. https://doi.org/10.1080/15376494.2022.2062632
  17. He, X.Q., Ng, T.Y., Sivashanker, S. and Liew, K.M. (2001), ''Active control of FGM plates with integrated piezoelectric sensors and actuators'', Int. J. Solids Struct., 38(9), 1641-1655.https://doi.org/10.1016/S0020-7683(00)00050-0
  18. Jafari, P. and Kiani, Y. (2021), "Free vibration of functionally graded graphene platelet reinforced plates: A quasi 3D shear and normal deformable plate model", Compos. Struct., 275, 114409. https://doi.org/10.1016/j.compstruct.2021.114409
  19. Jafari, P. and Kiani, Y. (2022), "Analysis of Arbitrary Thick Graphene Platelet Reinforced Composite Plates Subjected to Moving Load using a Shear and Normal Deformable Plate Model", Mater. Today Commun., p. 103745. https://doi.org/10.1016/j.mtcomm.2022.103745
  20. Kar, V.R. and Panda, S.K. (2015a), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., Int. J., 18(3), 693-709. https://doi.org/10.12989/scs.2015.18.3.693
  21. Kar, V.R. and Panda, S.K. (2015b), "Large deformation bending analysis of functionally graded spherical shell using FEM", Struct. Eng. Mech., Int. J., 53(4), 661-679. https://doi.org/10.12989/sem.2015.53.4.661
  22. Kar, V.R. and Panda, S.K. (2015c), "Free vibration responses of temperature dependent functionally graded curved panels under thermal environment", Latin Am. J. Solids Struct., 12, 2006-2024. https://doi.org/10.1590/1679-78251691
  23. Kar, V.R. and Panda, S.K. (2015d), "Thermoelastic analysis of functionally graded doubly curved shell panels using nonlinear finite element method", Compos. Struct., 129, 202-212. https://doi.org/10.1016/j.compstruct.2015.04.006
  24. Kar, V.R. and Panda, S.K. (2016a), "Nonlinear thermo mechanical deformation behaviour of P-FGM shallow spherical shell panel", Chinese J. Aeronaut., 29(1), 173-183. https://doi.org/10.1016/j.cja.2015.12.007
  25. Kar, V.R. and Panda, S.K. (2016b), "Nonlinear thermomechanical behavior of functionally graded material cylindrical/hyperbolic/elliptical shell panel with temperature-dependent and temperature-independent properties", J. Press. Vessel Technol., 138(6), 061202. https://doi.org/10.1115/1.4033701
  26. Kar, V.R. and Panda, S.K. (2016c), "Post-buckling behaviour of shear deformable functionally graded curved shell panel under edge compression", Int. J. Mech Sci., 115, 318-324. https://doi.org/10.1016/j.ijmecsci.2016.07.014
  27. Kar, V.R. and Panda, S.K. (2016d), "Geometrical nonlinear free vibration analysis of FGM spherical panel under nonlinear thermal loading with TD and TID properties", J. Thermal Stress., 39(8), 942-959. https://doi.org/10.1080/01495739.2016.1188623
  28. Kar, V.R. and Panda, S.K. (2016e), "Nonlinear free vibration of functionally graded doubly curved shear deformable panels using finite element method", J. Vib. Control, 22(7), 1935-1949. https://doi.org/10.1177/1077546314545102
  29. Kar, V.R. and Panda, S.K. (2017a), "Post buckling analysis of shear deformable FG shallow spherical shell panel under non uniform thermal environment", J. Thermal Stress., 40(1), 25-39. https://doi.org/10.1080/01495739.2016.1207118
  30. Kar, V.R. and Panda, S.K. (2017b), "Large-amplitude vibration of functionally graded doubly-curved panels under heat conduction", AIAA J, 55(12), 4376-4386. https://doi.org/10.2514/1.J055878
  31. Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2015), "Nonlinear flexural analysis of laminated composite flat panel under hygrothermo-mechanical loading", Steel Compos. Struct., Int. J., 19(4), 1011-1033. https://doi.org/10.12989/scs.2015.19.4.1011
  32. Kar, V.R., Panda, S.K. and Mahapatra, T.R. (2016), "Thermal buckling behaviour of shear deformable functionally graded single/doubly curved shell panel with TD and TID properties", Adv. Mater. Res., Int. J., 5(4), 205-221. https://doi.org/10.12989/amr.2016.5.4.205
  33. Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2017), "Effect of different temperature load on thermal postbuckling behaviour of functionally graded shallow curved shell panels", Compos. Struct., 160, 1236-1247. https://doi.org/10.1016/j.compstruct.2016.10.125
  34. Kiani, Y. (2018), "Thermal post-buckling of temperature dependent sandwich plates with FG-CNTRC faces sheets", J. Thermal Stress., 41(7), 866-882. https://doi.org/10.1080/01495739.2018.1425645
  35. Kiani, Y. (2020), "NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates. J. Thermal Stress., 43(1), 90-108. https://doi.org/10.1080/01495739.2019.1673687
  36. Koizumi, M. (1993), "The Stability of Cylindrical Shells Containing an FGM Layer Subjected to Axial Load on the Pasternak Foundation, The concept of FGM", Ceram. Trans. Func. Grad. Mater., 34, 3-10.
  37. Kolahchi, R., Safari, M. and Esmailpour, M. (2016), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023
  38. Liang, X., Wang, Z., Wang, L. and Liu, G. (2014), "Semianalytical solution for three-dimensional transient response of functionally graded annular plate on a two parameter viscoelastic foundation", J. Sound Vib., 333(12), 2649-2663. https://doi.org/10.1016/j.jsv.2014.01.021
  39. Mahamood, R.M., Akinlabi, E.T., Shukla, M. and Pityana, S.L. (2012), "Functionally graded material: an overview", Proceedings of the World Congress on Engineering 2012, Vol III, London, UK.
  40. Mehar, K., Panda, S.K., Dehengia, A. and Kar, V.R. (2016), "Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment", J. Sandw. Struct. Mater., 18(2), 151-173. https://doi.org/10.1177%2F1099636215613324 https://doi.org/10.1177%2F1099636215613324
  41. Mehar, K., Panda, S.K., Devarajan, Y. and Choubey, G. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct, 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002
  42. Mehar, K., Panda, S.K. and Sharma, N. (2020), "Numerical investigation and experimental verification of thermal frequency of carbon nanotube-reinforced sandwich structure", Eng. Struct., 211, 110444. https://doi.org/10.1016/j.engstruct.2020.110444
  43. Nebab, M., Atmane, H.A., Bennai, R., Tounsi, A. and Bedia, E. (2019a), ''Vibration response and wave propagation in FG plates resting on elastic foundations using HSDT'', Struct. Eng. Mech., Int. J., 69(5), 511-525. https://doi.org/10.12989/sem.2019.69.5.511
  44. Nebab, M., Ait Atmane, H., Bennai, R. and Tahar, B. (2019b), ''Effect of nonlinear elastic foundations on dynamic behavior of FG plates using four-unknown plate theory'', Earthq. Struct., Int. J., 17(5), 447-462. https://doi.org/10.12989/eas.2019.17.5.447
  45. Nebab, M., Ait Atmane, H., Bennai, R. and Tounsi, A. (2019c), ''Effect of variable elastic foundations on static behavior of functionally graded plates using sinusoidal shear deformation'', Arab. J. Geosci., 12(24), 809. https://doi.org/10.1007/s12517-019-4871-5
  46. Qian, L.F., Batra, R.C. and Chen, L.M. (2004), ''Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method'', Compos. Part B: Eng., 35(6-8), 685-697. https://doi.org/10.1016/j.compositesb.2004.02.004
  47. Ramji, K., Kar, V.R., Panda, S.K. and Pandey, H.K. (2018), "Numerical study of temperature dependent eigenfrequency responses of tilted functionally graded shallow shell structures. Struct. Eng. Mech., Int. J., 68(5), 527-536. https://doi.org/10.12989/sem.2018.68.5.527
  48. Ramteke, P.M., Panda, S.K. and Sharma, N. (2019), "Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure", Steel Compos. Struct., Int. J., 33(6), 865-875. https://doi.org/10.12989/scs.2019.33.6.865
  49. Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47, 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8
  50. Shahsavari, D., Karami, B., Fahham, H.R. and Li, L. (2018), "On the shear buckling of porous nanoplates using a new sizedependent quasi-3D shear deformation theory", Acta Mechanica, 229(11), 4549-4573. https://doi.org/10.1007/s00707-018-2247-7
  51. Simsek, M. (2014), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nuclear Eng. Des., 240(4), 697-705. https://doi.org/10.1016/j.nucengdes.2009.12.013
  52. Tan, P., Nguyen-Thanh, N., Rabczuk, T. and Zhou, K. (2018), ''Static, dynamic and buckling analyses of 3D FGM plates and shells via an isogeometric-meshfree coupling approach'', Compos. Struct., 198, 35-50. https://doi.org/10.1016/j.compstruct.2018.05.012
  53. Viola, E., Tornabene, F. and Fantuzzi, N. (2013), ''General higherorder shear deformation theories for the free vibration analysis of completely doubly-curved laminated shells and panels'', Compos. Struct., 95, 639-666. https://doi.org/10.1016/j.compstruct.2012.08.005
  54. Yang, B., Ding, H.J. and Chen, W.Q. (2012), "Elasticity solutions for functionally graded rectangular plates with two opposite edges simply supported", Appl. Mathe. Modell., 36(1), 488-503. https://doi.org/10.1016/j.apm.2011.07.020
  55. Yousfi, M., Atmane, H.A., Meradjah, M., Tounsi, A. and Bennai, R. (2018), "Free vibration of FGM plates with porosity by a shear deformation theory with four variables", Struct. Eng. Mech., Int. J., 66(3), 353-368. https://doi.org/10.12989/sem.2018.66.3.353
  56. Zenkour, A.M. (2006), "Generalized shear deformation theory for bending analysis of functionally graded plates", Appl. Math. Model., 30(1), 67-84. https://doi.org/10.1016/j.apm.2005.03.009