DOI QR코드

DOI QR Code

Pseudogenes: Nuances and Nuisances in Molecular Diagnostics

  • Oh, Seung Hwan (Department of Laboratory Medicine, Pusan National University Yangsan Hospital)
  • Received : 2022.10.04
  • Accepted : 2022.10.13
  • Published : 2022.10.31

Abstract

Pseudogenes are genomic regions that contain gene-like sequences that have a high similarity to the known genes but are nonfunctional. They are categorized into processed, unprocessed, and unitary pseudogenes. Unprocessed pseudogenes generated by duplications can be problematic in sequencing approaches in molecular diagnostics. We discuss the risk of misdiagnosis when investigating genes with pseudogenes of high homology, and describe a method for identifying these small and annoying differences between parent genes and pseudogenes, including parent gene-specific assay design.

Keywords

References

  1. Balakirev ES, Ayala FJ. Pseudogenes: are they "junk" or functional DNA?. Annu Rev Genet 2003;37:123-51. https://doi.org/10.1146/annurev.genet.37.040103.103949
  2. Zhang Z, Harrison P, Gerstein M. Identification and analysis of over 2000 ribosomal protein pseudogenes in the human genome. Genome Res 2002;12:1466-82. https://doi.org/10.1101/gr.331902
  3. Harrison PM, Gerstein M. Studying genomes through the aeons: protein families, pseudogenes and proteome evolution. J Mol Biol 2002;318:1155-74. https://doi.org/10.1016/S0022-2836(02)00109-2
  4. Balasubramanian S, Harrison P, Hegyi H, Bertone P, Luscombe N, Echols N, et al. SNPs on human chromosomes 21 and 22 - analysis in terms of protein features and pseudogenes. Pharmacogenomics 2002;3:393-402. https://doi.org/10.1517/14622416.3.3.393
  5. Echols N, Harrison P, Balasubramanian S, Luscombe NM, Bertone P, Zhang Z, et al. Comprehensive analysis of amino acid and nucleotide composition in eukaryotic genomes, comparing genes and pseudogenes. Nucleic Acids Res 2002;30:2515-23. https://doi.org/10.1093/nar/30.11.2515
  6. Harrison PM, Hegyi H, Balasubramanian S, Luscombe NM, Bertone P, Echols N, et al. Molecular fossils in the human genome: identification and analysis of the pseudogenes in chromosomes 21 and 22. Genome Res 2002;12:272-80. https://doi.org/10.1101/gr.207102
  7. Muro EM, Mah N, Andrade-Navarro MA. Functional evidence of post-transcriptional regulation by pseudogenes. Biochimie 2011;93:1916-21. https://doi.org/10.1016/j.biochi.2011.07.024
  8. Pink RC, Wicks K, Caley DP, Punch EK, Jacobs L, Carter DR. Pseudogenes: pseudo-functional or key regulators in health and disease? RNA 2011;17:792-8. https://doi.org/10.1261/rna.2658311
  9. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 2011;146:353-8. https://doi.org/10.1016/j.cell.2011.07.014
  10. Guo X, Lin M, Rockowitz S, Lachman HM, Zheng D. Characterization of human pseudogene-derived non-coding RNAs for functional potential. PLoS One 2014;9:e93972. https://doi.org/10.1371/journal.pone.0093972
  11. Tam OH, Aravin AA, Stein P, Girard A, Murchison EP, Cheloufi S, et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 2008;453:534-8. https://doi.org/10.1038/nature06904
  12. Chen B, Wang C, Zhang J, Zhou Y, Hu W, Guo T. New insights into long noncoding RNAs and pseudogenes in prognosis of renal cell carcinoma. Cancer Cell Int 2018;18:157. https://doi.org/10.1186/s12935-018-0652-6
  13. Hu X, Yang L, Mo YY. Role of Pseudogenes in Tumorigenesis. Cancers (Basel) 2018;10(8):256. https://doi.org/10.3390/cancers10080256
  14. Jiang T, Guo J, Hu Z, Zhao M, Gu Z, Miao S. Identification of Potential Prostate Cancer-Related Pseudogenes Based on Competitive Endogenous RNA Network Hypothesis. Med Sci Monit 2018;24:4213-39. https://doi.org/10.12659/MSM.910886
  15. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 2012;22:1760-74. https://doi.org/10.1101/gr.135350.111
  16. Pei B, Sisu C, Frankish A, Howald C, Habegger L, Mu XJ, et al. The GENCODE pseudogene resource. Genome Biol 2012;13:R51. https://doi.org/10.1186/gb-2012-13-9-r51
  17. Cheetham SW, Faulkner GJ, Dinger ME. Overcoming challenges and dogmas to understand the functions of pseudogenes. Nat Rev Genet 2020;21:191-201. https://doi.org/10.1038/s41576-019-0196-1
  18. Zhang ZD, Frankish A, Hunt T, Harrow J, Gerstein M. Identification and analysis of unitary pseudogenes: historic and contemporary gene losses in humans and other primates. Genome Biol 2010;11:R26. https://doi.org/10.1186/gb-2010-11-3-r26
  19. Mighell AJ, Smith NR, Robinson PA, Markham AF. Vertebrate pseudogenes. FEBS Lett 2000;468:109-14. https://doi.org/10.1016/S0014-5793(00)01199-6
  20. Ohshima K, Hattori M, Yada T, Gojobori T, Sakaki Y, Okada N. Whole-genome screening indicates a possible burst of formation of processed pseudogenes and Alu repeats by particular L1 subfamilies in ancestral primates. Genome Biol 2003;4:R74. https://doi.org/10.1186/gb-2003-4-11-r74
  21. Frankish A, Diekhans M, Ferreira AM, Johnson R, Jungreis I, Loveland J, et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res 2019;47:D766-73. https://doi.org/10.1093/nar/gky955
  22. Vemuganti SA, de Villena FP, O'Brien DA. Frequent and recent retrotransposition of orthologous genes plays a role in the evolution of sperm glycolytic enzymes. BMC Genomics 2010;11:285. https://doi.org/10.1186/1471-2164-11-285
  23. Sayah DM, Sokolskaja E, Berthoux L, Luban J. Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. Nature 2004;430:569-73. https://doi.org/10.1038/nature02777
  24. Burki F, Kaessmann H. Birth and adaptive evolution of a hominoid gene that supports high neurotransmitter flux. Nat Genet 2004;36:1061-3. https://doi.org/10.1038/ng1431
  25. Hayashi H, Arao T, Togashi Y, Kato H, Fujita Y, De Velasco MA, et al. The OCT4 pseudogene POU5F1B is amplified and promotes an aggressive phenotype in gastric cancer. Oncogene 2015;34:199-208. https://doi.org/10.1038/onc.2013.547
  26. Vinckenbosch N, Dupanloup I, Kaessmann H. Evolutionary fate of retroposed gene copies in the human genome. Proc Natl Acad Sci U S A 2006;103:3220-5. https://doi.org/10.1073/pnas.0511307103
  27. Fiddes IT, Lodewijk GA, Mooring M, Bosworth CM, Ewing AD, Mantalas GL, et al. Human-Specific NOTCH2NL Genes Affect Notch Signaling and Cortical Neurogenesis. Cell 2018;173:1356-69.e13. https://doi.org/10.1016/j.cell.2018.03.051
  28. Tian Y, Wang JL, Huang W, Zeng S, Jiao B, Liu Z, et al. Expansion of Human-Specific GGC Repeat in Neuronal Intranuclear Inclusion Disease-Related Disorders. Am J Hum Genet 2019;105:166-76. https://doi.org/10.1016/j.ajhg.2019.05.013
  29. Okubo M, Doi H, Fukai R, Fujita A, Mitsuhashi S, Hashiguchi S, et al. GGC Repeat Expansion of NOTCH2NLC in Adult Patients with Leukoencephalopathy. Ann Neurol 2019;86:962-8. https://doi.org/10.1002/ana.25586
  30. Sone J, Mitsuhashi S, Fujita A, Mizuguchi T, Hamanaka K, Mori K, et al. Long-read sequencing identifies GGC repeat expansions in NOTCH2NLC associated with neuronal intranuclear inclusion disease. Nat Genet 2019;51:1215-21. https://doi.org/10.1038/s41588-019-0459-y
  31. Liu W, Chen M, Wei J, He W, Li Z, Sun X, et al. Modification of PCR conditions and design of exon-specific primers for the efficient molecular diagnosis of PKD1 mutations. Kidney Blood Press Res 2014;39:536-45. https://doi.org/10.1159/000368464
  32. Sorge J, Gross E, West C, Beutler E. High level transcription of the glucocerebrosidase pseudogene in normal subjects and patients with Gaucher disease. J Clin Invest 1990;86:1137-41. https://doi.org/10.1172/JCI114818
  33. Zampieri S, Cattarossi S, Bembi B, Dardis A. GBA Analysis in Next-Generation Era: Pitfalls, Challenges, and Possible Solutions. J Mol Diagn 2017;19:733-41. https://doi.org/10.1016/j.jmoldx.2017.05.005
  34. van der Ven PF, Odgerel Z, Furst DO, Goldfarb LG, Kono S, Miyajima H. Dominant-negative effects of a novel mutation in the filamin myopathy. Neurology 2010;75:2137-8. https://doi.org/10.1212/WNL.0b013e3182031bb3
  35. Odgerel Z, van der Ven PF, Furst DO, Goldfarb LG. DNA sequencing errors in molecular diagnostics of filamin myopathy. Clin Chem Lab Med 2010;48:1409-14. https://doi.org/10.1515/CCLM.2010.272
  36. Kono S, Nishio T, Takahashi Y, Goto-Inoue N, Kinoshita M, Zaima N, et al. Dominant-negative effects of a novel mutation in the filamin myopathy. Neurology 2010;75:547-54. https://doi.org/10.1212/WNL.0b013e3181ec7fbd
  37. Li Z, Zhang X, Xue W, Zhang Y, Li C, Song Y, et al. Recurrent GNAQ mutation encoding T96S in natural killer/T cell lymphoma. Nat Commun 2019;10:4209. https://doi.org/10.1038/s41467-019-12032-9
  38. Lim JQ, Lim ST, Ong CK. Misaligned sequencing reads from the GNAQ-pseudogene locus may yield GNAQ artefact variants. Nat Commun 2022;13:458.
  39. Kent WJ. BLAT--the BLAST-like alignment tool. Genome Res 2002;12:656-64.