Note

CO₂와 H₂O의 중성 금속과 금속 이온에 대한 흡착: DFT 연구

이민주

창원대학교 생물학화학융합학부 (접수 2022. 8. 22; 게재확정 2022. 9. 5)

Adsorption of CO₂ and H₂O on Neutral Metals and Their Ions: A DFT Study

Min-Joo Lee

Department of Biology and Chemistry, Changwon National University, Changwon, Gyeongnam 51140, Korea. E-mail: mjlee@changwon.ac.kr (Received August 22, 2022; Accepted September 5, 2022)

주제어: 이산화탄소(CO₂), 물(H₂O), 흡착, 중성 금속(Ni, Cu, Zn), 금속 이온(Ni²⁺, Cu²⁺, Zn²⁺) Key words: Carbon dioxide, Water, Adsorption, Neutral metals (Ni, Cu, Zn), Metal ions (Ni²⁺, Cu²⁺, Zn²⁺)

화석연료의 연소로 인한 CO₂ 배출은 지구 온난화를 야 기하는 주범 중 하나로 우리 인류가 조속히 해결해야 할 주요 환경 문제의 하나이다. 현재 우리는 CO₂ 기체를 매 년 36기가 톤(Gt) 정도를 대기 중으로 방출하고 있다. 이 수치는 향후 20년 내에 50 Gt까지에 도달할 것으로 예측 되고 있으며, 이들 중 대부분(~90%)은 화석연료 연소와 시멘트 생산 과정에서 이루어지고 있다.¹ 따라서 연도 기 체(flue gas) 등에서 배출되는 CO₂를 포집하여 대기 중으 로 CO₂가 유입되는 것을 최소화하는 것은 우리 인류가 반 드시 해결해야 할 시급한 과제이다.

연도 가스에서 CO₂는 연소 과정에서 다른 기체들과 혼 합된 상태로 배출된다. 예를 들면 석탄 화력발전소에서 배출되는 연도 가스는 73~77%의 N₂, 15~16%의 CO₂, 5~7%의 H₂O, 3~4%의 O₂로 구성되고, 천연가스 화력발전소는 76~85%의 N₂, 4~11%의 CO₂, 2~7%의 H₂O, 2~13%의 O₂로 구성된다.^{2,3} 여기에서 N₂와 O₂는 거의 대부분이 화석연료를 연소시키기 위해서 주입되는 공기로부터 오는 것이고, CO₂와 H₂O의 대부분은 석탄(coal)과 천연기체(natural gas)와 같은 유기물의 연소에서 생성되는 것이다.

위 4가지 성분 중 N₂, O₂, CO₂는 선형 구조(D_{∞h})를 갖는 비극성 분자이고, H₂O는 굽은형 구조(C_{2v})를 갖는 극성 분 자이다. 따라서 비극성인 N₂, O₂, CO₂는 흡착체에 약한 물 리적 흡착을 할 것으로 여겨지며, H₂O는 쌍극자 모멘텀에 의하여 상대적으로 강한 극성 흡착이 일어날 것으로 여겨 진다. 이러한 요인으로 인하여 H₂O 분자는 CO₂가 흡착체에 흡착되는 것을 저해하는 하는 것으로 나타나고 있다.⁴⁻⁶ 따라서 촉매로 활용될 수 있는 금속 표면에서 CO₂와 H₂O의 흡착 생성 안정도에 대한 깊은 이해가 필요한 실정 이다. 그러므로 본 연구에서는 공기 중에서 산화가 잘 되지 않아 매우 안정하면서도 매장량이 풍부하여 상대적으로 가격이 저렴한 Ni, Cu, Zn 금속을 대상으로 하여 중성 금 속일 때와 +2가로 하전되었을 때에 대하여 CO₂와 H₂O 착 물 형성 안정도를 DFT법을 사용하여 탐구하여 이들 금속 및 금속 이온과의 흡착 안정도를 비교 분석하였다.

본 연구에서 모든 계산은 Gaussian 16⁷과 GaussView 6.0⁸ 프로그램을 사용하여 1기압 400 K 조건에서 기체 상태에 대해 실시하였다. 반응물, 중간체, 전이상태 및 생성물에 대한 기하 구조에 대한 최적화를 위한 DFT 계산은 augcc-pVTZ 기저 세트(basis sets)^{9,10}와 함께 APF-D hybrid DFT 범함수¹¹(APFD/aug-cc-pVTZ)를 사용하여 수행되었 다. CO₂와 H₂O가 중성 금속(M = Ni, Cu, Zn) 및 금속 이온 ($M^{2+} = Ni^{2+}$, Cu²⁺, Zn²⁺) 표면에서의 착물 형성에 대한 에 너지 안정도(ΔH°)와 반응 자발성(ΔG°)을 구하기 위하여 $M 및 M^{2+}$ 을 각 분자의 중심(CO₂의 경우 C 원자, H₂O의 경우 O 원자)으로부터 2.00 Å 떨어진 곳에 위치한 후 basis set superposition error를 보정하기 위하여 counterpoise correction^{12,13} 법을 사용하여 구조를 최적화한 후 frequency 계산을 수행 하였다.

CO₂와 H₂O 기체 분자에 대해서 물 분자가 1기압에서 충분히 기화될 수 있는 온도인 400 K에서의 얻어진 각 구 조에 대한 모양과 구조 파라미터 및 쌍극자 모멘트는 *Table* 1에 정리해 놓았다. *Table* 1에서 보듯이 본 계산에서 *Table* 1. Optimized structural features, structural parameters, and dipole moments of CO_2 and H_2O at 400 K*

	CO_2	H_2O
Structural feature	$ \begin{array}{c} \bullet & \bullet \\ \hline \bullet & \bullet \\ D_{\infty h} \end{array} $	H CH
		C_{2v}
$r_{ m CO,OH}$	1.159	0.960
\angle	180.0	104.8
μ	0.00	1.85

^{*}Bond lengths are in Å, bond angles in degree (°), and dipole moment in debye (D).

CO₂는 *D*_{wh} 대칭 구조인 직선형 구조로 비극성(*µ* = 0.00 D) 분자임을 확인할 수 있고, H₂O는 *C*₂, 대칭인 굽은형 극성 (*µ* = 1.85 D) 분자임을 알 수 있다. 따라서 H₂O가 CO₂보다 금속 표면에 흡착이 강하게 일어날 수 있음을 예측할 수 있다.

직선형으로 비극성인 CO₂와 굽은형으로 극성인 H₂O가 중성 금속 원자 Ni, Cu, Zn과 착물을 이루는 경우에 대한 구조 최적화와 frequency 계산 결과에 따른 구조와 엔탈피 및 자유 에너지 차는 *Table* 2에 나와 있다. *Table* 2에서 보 듯이 CO₂와 H₂O가 Ni, Cu, Zn과 착물을 형성할 때, Δ*H*^o가 CO₂는 각각 -23.5, -6.9, -1.6 kJ mol⁻¹만큼 안정화 되는 반 면에 H₂O는 -56.6, -36.4, -0.8 kJ mol⁻¹만큼 안정화 된다. 그러므로 Zn의 경우에는 에너지적으로 안정화 되는 정도가 비슷하나, Ni와 Cu의 경우에는 모두 약 30 kJ mol⁻¹ 정도 H₂O가 유리한 것으로 나타나고 있다.

한편 ΔG°는 CO₂가 Ni, Cu, Zn과 착물을 형성할 때는 12.8, 30.1, 16.0 kJ mol⁻¹이고, H₂O가 Ni, Cu, Zn과 착물을 형성할 때는 -22.2, -1.8, 13.0 kJ mol⁻¹로 얻어졌다. 이는 CO₂의 Ni, Cu, Zn에의 흡착은 1기압 400 K에서 비자발적 임을 나타낸다. 반면에 H₂O가 1기압 400 K에서 Zn에의 흡착은 비자발적이나, Ni 및 Cu에의 흡착은 자발적으로 일어날 수 있음을 나타낸다. 다만 H₂O의 Cu에의 흡착은 자발성이 매우 약하여(ΔG° = -1.8 kJ mol⁻¹) 의미 있는 흡 착이 관찰되기는 어려울 것으로 여겨진다.

Ni, Cu, Zn은 원자번호가 28, 29, 30인 원소들이고, 전자 배치는 각각 [Ar]4s²3d⁸, [Ar]4s¹3d¹⁰, [Ar]4s²3d¹⁰이며, 2차 이온화 에너지는 각각 1753, 1958, 1733 kJ mol⁻¹로 어렵지 않게 +2가의 양전하를 띠는 종으로 변환될 수 있다.¹⁴ 비 극성 분자인 CO2와 극성 분자인 H2O가 +2가의 화학종인 Ni²⁺, Cu²⁺, Zn²⁺과 착물을 이루는 경우에 대한 구조 최적화와 frequency 계산 결과에 따른 구조와 엔탈피 및 자유 에너지 차는 Table 3에 정리되어 있다. Table 3에서CO2와 H2O가 Ni²⁺, Cu²⁺, Zn²⁺과 착물을 형성할 때, ΔH^o가 CO₂의 경우에는 각각 -192.4, -187.7, -133.1 kJ mol⁻¹만큼 안정화 되고, H₂O의 경우에는 각각 -441.3, -519.8, -427.3 kJ mol⁻¹만큼 안정화 된다. 그러므로 CO₂와 H₂O 모두 Ni²⁺, Cu²⁺, Zn²⁺ 화학종에의 흡착은 1기압 400 K에서 에너지적으로 안정화 되는 과정 임을 알 수 있다. 그럼에도 불구하고 H2O의 흡착이 CO2의 흡착보다 약 250~350 kJ mol⁻¹정도 더 안정한 과정으로 나 타났다.

또한 Δ*G*°는 CO₂가 Ni²⁺, Cu²⁺, Zn²⁺ 화학종과 착물을 형 성할 때는 -151.8, -146.8, -93.1 kJ mol⁻¹이고, H₂O가 Ni²⁺, Cu²⁺, Zn²⁺ 화학종과 착물을 형성할 때는 -402.5, -479.5, -389.3 kJ mol⁻¹로 얻어졌다. 이는 CO₂와 H₂O 모두 Ni²⁺, Cu²⁺, Zn²⁺ 화학종에의 흡착은 1기압 400 K에서 자발적으로

, , , ,		, I 2				
	Ni + CO ₂ complex	$Cu + CO_2$ complex	$Zn + CO_2$ complex	Ni + H ₂ O complex	Cu + H ₂ O complex	$Zn + H_2O$ complex
Structural feature	Ni	0 	2nC			2 ····· 0
	C_{2v}	C_{2v}	C_{2v}	Cs	C _s	$C_{\rm s}$
$r_{MC,MO}$	2.424	2.123	3.889	2.163	2.028	3.302
<i>r</i> _{со,он}	1.165	1.179	1.159	0.964	0.965	0.960
<i>∠м</i> со, <i>м</i> он	92.8	98.7	90.0	106.8	110.1	117.5
∠осо,нон	174.5	162.6	179.9	105.8	106.0	105.0
$\Delta H^{\circ**}$	-23.5	-6.9	-1.6	-56.6	-36.4	-0.8
$\Delta G^{\circ **}$	12.8	30.1	16.0	-22.2	-1.8	13.0
$-T\Delta S^{\mathbf{o}**}$	36.3	37.0	17.6	34.5	34.6	13.8

Table 2. Optimized structural features, structural parameters, and ΔH° , and ΔG° of complexes formed from the combinations of M (M = Ni, Cu, and Zn) with CO₂ and H₂O at 400 K, respectively*

*Bond lengths are in Å, bond angles in degree (°), and ΔH° and ΔG° in kJ mol⁻¹.

**The values of ΔH^0 , ΔG^0 , and $-T\Delta S^0$ were obtained based on those of M and CO₂ for the $M + CO_2$ complexes.

	2	2	2	2.	2.	2
	$Ni^{2+} + CO_2$	$Cu^{2+} + CO_2$	$Zn^{2+} + CO_2$	$Ni^{2+} + H_2O$	$Cu^{2+} + H_2O$	$Zn^{2+} + H_2O$
	complex	complex	complex	complex	complex	complex
Structural feature	0 Ni C	CuC	zn C		ao	
	$C_{2\mathrm{v}}$	C_{2v}	$C_{2\mathbf{v}}$	C_{s}	C_{s}	C_{s}
$r_{M}^{2^{+}}$ C, $M^{2^{+}}$ O	2.237	2.125	2.201	1.964	1.841	1.860
$r_{\rm CO,OH}$	1.174	1.175	1.175	0.979	0.987	0.979
$\angle M^{2+}$ co, M^{2+} oh	78.9	80.7	81.3	121.6	121.3	125.4
∠ осо,нон	157.8	161.5	162.5	108.6	107.7	109.2
$\Delta H^{\circ * *}$	-192.4	-187.7	-133.1	-441.3	-519.8	-427.3
$\Delta G^{\circ**}$	-151.8	-146.8	-93.1	-402.5	-479.5	-389.3
$-T\Delta S^{\circ**}$	40.6	40.9	40.1	38.9	40.3	38.0

Table 3. Optimized structural features, structural parameters, and ΔH° , and ΔG° of complexes formed from the combinations of M^{2+} (M^{2+} = Ni²⁺, Cu²⁺, and Zn²⁺) with CO₂ and H₂O at 400K, respectively*

*Bond lengths are in Å, bond angles in degree (°), and ΔH° and ΔG° in kJ mol⁻¹

**The values of ΔH^{0} , ΔG^{0} , and $-T\Delta S^{0}$ were obtained based on those of M and CO₂ for the M^{2+} + CO₂ complexes.

일어날 수 있음을 알 수 있다. 여기에서 자발성 역시 ΔH^o 와 마찬가지로 약 250~350 kJ mol⁻¹정도 더 자발성이 강한 과정으로 나타났다.

Table 2와 3에서 보듯이 CO₂가 금속에 흡착되는 경우에, ΔG°에 기여하는 $-T\Delta S^{\circ}$ 값은 금속이 중성에서 +2가 이온 으로 바뀌었을 때 니켈의 경우 36.3→40.6 kJ mol⁻¹, 구리의 경우 37.0→40.9 kJ mol⁻¹, 아연의 경우 17.6→40.1 kJ mol⁻¹ 로 각각 4.3, 3.9, 22.5 kJ mol⁻¹ 증가하였다. 그리고 H₂O가 금속에 흡착되는 경우에는 니켈에서는 34.5→38.9 kJ mol⁻¹, 구리에서는 34.6→40.3 kJ mol⁻¹, 아연에서는 13.8→38.0 kJ mol⁻¹ 각각 4.4, 5.7, 24.2 kJ mol⁻¹ 증가하였다. 그러므로 CO₂와 H₂O가 흡착될 때 *M*이 중성에서 +2가로 하전된 금 속으로 바뀌었을 때, 엔트로피 변화는 크지 않은 것으로 나타났다. 이는 CO₂와 H₂O 흡착 반응의 자발성(ΔG°)이 *M* 에서 M^{2+} 로 변함에 따라 크게 증가하는 것은 엔탈피 감소가 엔트로피 증가를 크게 상회하기 때문인 것으로 나타났다.

한편 *Table* 2와 3에서 구조 형태(Structural feature)와 금 속($M \amalg M^{+}$)과 CO₂분자 간의 결합각(즉 \angle_{MCO} 와 \angle_{M}^{2+} co)을 보면 유의미한 변화가 일어났음을 알 수 있다. *Table* 2에 서 Ni, Cu, Zn과 CO₂와의 결합각 \angle_{MCO} 는 각각 92.8, 98.7, 90.0°로 CO₂가 Ni, Cu, Zn과 착물을 형성할 때, 전기음성도 가 큰 O원자가 중성 금속 원자로부터 멀어지는 방향으로 CO₂의 구조가 꺾기는 것을 알 수 있다. 반면에 *Table* 3에서 Ni²⁺, Cu²⁺, Zn²⁺과 CO₂와의 결합각 \angle_{M}^{2+} co는 각각 78.9, 80.7, 81.3°로 CO₂가 Ni²⁺, Cu²⁺, Zn²⁺과 착물을 형성할 때는 O원자가 +2가의 금속 종으로부터 가까워지는 방향으로 CO₂의 구조가 꺾기는 것을 알 수 있다.

결론적으로 온실가스 CO2가 Ni, Cu, Zn과 같은 중성 전

이금속 표면에 흡착되기 어려운 것은 1차적으로는 CO₂의 분자 구조적 특성(선형 비극성)에 기인한다고 볼 수 있다. 여기에 더하여 탄화수소화합물이 주성분인 화석연료가 연소될 때 필연적으로 발생하는 H₂O는 엔탈피(ΔH[°])와 자 유 에너지(ΔG[°]) 모두에서 중성 금속 또는 양전하로 하전 된 금속에 흡착될 때 H₂O가 CO₂보다 유리하여 CO₂의 흡 착을 더욱 어렵게 하는 것으로 여겨진다.

Acknowledgments. 이 논문은 2021~2022년도 창원대학교 자율연구과제 연구비 지원으로 수행된 연구결과임.

REFERENCES

- Core Writing Team, Pachauri, R. K.; Meyer, L. A., Eds., *Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change*. IPCC: Geneva, Switzerland, 2014.
- 2. Granite, E. J.; Pennline, H. W. Ind. Eng. Chem. Res. 2002, 41, 5470.
- 3. Halgg, M.-B.; Lindbr, A. Ind. Eng. Chem. Res. 2005, 44, 7668.
- 4. Tan, K. et al. Chem. Mater. 2015, 27, 2203.
- 5. Rege, S. U.; Yang, R. T. Chem. Eng. Sci. 2001, 56, 3781.
- 6. Henderson, M. A. Surf. Sci. 1998, 400, 203.
- 7. Frisch, M. J.; et al. *Gaussian 16, Revision C.01*; Gaussian, Inc.: Wallingford, CT, USA, 2019.
- Dennington, R. D. III; Keith, T. A.; Millam, J. M. *Gauss-View 6.0.16*; Semichem Inc.: Shawnee Mission, Kansas, USA, 2016.
- 9. Kendall, R. A.; Dunning T. H. Jr.; Harrison R. J. J. Chem.

Phys. 1992, 96, 6796.

- 10. Woon, D. E.; Dunnng, T. H. J. Chem. Phys. 1993, 98, 1358.
- Austin, A.; Peterson, G. A.; Frisch, M. J.; Dobek, F. J.; Scalmani, G; Throssell, K. J. Chem. Theory and Comput. 2012, 8, 4989.
- 12. Boys, S. F.; Bernardi, F. Mole. Phys. 1970, 19, 553.
- 13. Simon, S.; Duran, M.; Dannenberg, J. J. J. Chem. Phys. 1996, 105, 11024.
- 14. Dean, J. A. ed. *Lange's Handbook of Chemistry 13th ed.*; McGraw-Hill Inc.: New York, USA, 1985; p 3-7.