Note

새로운 Prolinol 유도체 키랄 정지상의 제조 및 활용

류재정

경북대학교 화학교육과 (접수 2022. 5. 18; 게재확정 2022. 6. 1)

Synthesis and Application of New Prolinol Derived Chiral Stationary Phases

Jae Jeong Ryoo

Department of Chemistry Education, Kyungpook National University E-mail: jjryoo@knu.ac.kr (Received May 18, 2022; Accepted June 1, 2022)

주제어: 프롤리놀, 아미노 알콜, 키랄 분리, HPLC **Key words:** Prolinol, Amino alcohol, Chiral separation, HPLC

서로 다른 거울상 이성질체 의약품은 생물체 내에서 다른 작용을 하여 하나의 이성질체는 아무런 효능이 없거나 심각한 부작용 유발하기도 한다.1 따라서 거울상 이성질 체 혼합물을 분리하기 위한 다양한 연구가 많이 진행되 어,²⁻⁴ brush/Pirkle type,⁵ polysaccharides,⁶ ligand exchange,⁷ crown ethers,⁸ proteins,⁹ cyclodextrin¹⁰ and cyclofructan¹¹ 등의 다양한 형태의 키랄 정지상들이 상품화되거나 소개되었 다. 본 연구진에서는 오래 전부터 키랄 아미노 알콜을 출 발물질로 사용한 다양한 정지상들을 개발하였는데,12-18 지금까지 개발한 대부분의 정지상들은 phenylglycinol이나 leucinol을 출발물질로 사용한 것이 대부분이었고,^{12,15,16,18} alaninol 이나 t-butyl-leucinol 등 다른 형태의 아미노 알콜을 키랄 정지상의 출발물질로 사용한 예는 phenylglycinol이 나 leucinol로부터 제조된 키랄 정지상의 효능을 비교하기 위하여 몇차례 있었다.^{13,14,17} 본 연구에서는 아미노 알코 올 중 오각고리인 pyrrolidine을 포함하는 prolinol을 키랄 정지상 제조의 출발물질로 이용하여 강한 pi-산성 작용기인 3,5-dinitro benzoyl기를 도입한 새로운 키랄 정지상으로 제조하여 몇 종의 대표적인 키랄 화합물의 광학분할에 적

용하였다. 동시에 기존에 발표된 phenylglycinol과 leucinol을 기저로 정지상을 보고된 방법과 동일한 과정을 거쳐 준비 하여 광학분할에 적용하였으며,^{12,13} 이를 통하여 prolinol 정 지상의 결과와 비교하였다. 본 연구에서 이용한 3종의 정 지상의 구조는 *Fig.* 1에 나타내었다.

또한 새로 개발된 prolinol 정지상의 제조과정은 기존에 발표된 논문을 따랐으며,^{12,13} 그 과정을 *Scheme* 1에 간단히 요약하였고, 상세한 제조과정은 실험부분에 기술하였다. 새로 제조한 키랄 정지상의 테스트에 이용된 15종 키랄 시료의 명칭과 구조를 *Fig.* 2에 나타내었다. 이들 시료들은 본 연구실에서 새로운 키랄 정지상을 개발하면 많은 키랄 시료들을 분석하기에 앞서 개발한 키랄 정지상들의 성능을 살펴보기 위해 사용되는 대표적인 키랄 화합물들이다.

제조한 키랄 정지상들의 원소분석 결과를 Table 1에 나 타내었다.

Table 1에서 볼 수 있듯이 제조된 prolinol을 출발 물질로 한 CSP 1이 상대적으로 더 많이 실리카 겔에 결합된 것을 확인하였으며, 나머지 키랄 선택제들도 실리카 겔에 잘 결합되어 있음을 확인하였다. 제조한 키랄 정지상들을 이

Figure 1. Structure of CSPs used in this study.

diphenyloxazolidin-2-one (S15)

Figure 2. Structure of chiral analytes used in this study.

2-oxazolidinone (S13)

2022, Vol. 66, No. 5

Table 1. Results of elemental analysis for CSP 1~3

	C (%)	N (%)	Based on C (mmol/g)	Based on N (mmol/g)	
CSP 1	4.637	1.132	0.241	0.202	
CSP 2	2.055	0.528	0.086	0.094	
CSP 3	3.700	0.787	0.134	0.140	
CSP 1		<u>S1</u>	M	(a)	
CSP 2		» S11	\bigwedge	(b)	
CSP 3	озу у Коз окраните и Страните и Коз окраните и Страните и Страни	<u>89</u> _/_	<u> </u>	(c)	
	0 5	10	15 20	25 30	

Figure 3. Resolution of (a) sample S1 on CSP 1, (b) S11 on CSP 2, (c) S9 on CSP 3. Eluent; 10% IPA in hexane, flow rate; 1.5 mL/min.

time(min.)

용하여 준비된 시료를 각각 분리하였다.

그 결과의 일부로써 *Fig.* 3에서 (a) CSP 1에서 6,6'-dibromo-1,1'-Bi-2-naphthol(S1) (b) CSP 2에서 climbazole (S11) 그리고 (c) CSP 3에서 *N*-DNB-*cis*-1-Amino-2-indanol (S9)을 분리 분석한 크로마토그램을 나타내었다.

Fig. 3에 나타낸 결과를 포함하여 준비된 15개의 키랄 시료들에 대한 분리분석 실험의 결과를 함께 Table 2에 나 타내었다.

Table 2에서 볼 수 있듯이 CSP 1과 CSP 2에서는 15개의 분석 시료 중에 8개가 분리되었고, CSP 3에서는 9개의 시 료가 분리되었다. CSP 1은 CSP 2와 동일한 숫자의 키랄 시료를 인지하였으나, 상대적으로 많은 키랄 선택제가 도 입되었음에도 더 높은 분리인자(α)를 보여주지는 못하였다.

다만 풍부한 π-전자를 가지는 시료인 S1에서 S5까지의 시료에서는 CSP 1이 5종의 시료 중 4종을 인지하여, 각각 2종의 시료를 인지한 CSP 2와 CSP 3에 비하여 키랄분리에 유리하였다. 또한 CSP 2와 CSP 3가 서로 분리 가능한 시 료를 6종 공유하는 것과 다르게 CSP 1의 경우에는 다른 CSP들과는 공통적으로 3종의 분리 가능한 시료를 공유하 였다. 특기할 점은 CSP 1에서 용량인자(k)가 크게 나타난 점 인데, 이로 보아 CSP 1에서 시료와의 π-π 상호작용이 CSP 2와 CSP 3에 비해 강하게 작용한 것으로 추정된다.

이는 키랄 탄소를 중심으로 유연하게 회전하여 상호작 용할 수 있는 여지가 있는 CSP 2와 CSP 3의 leucinol 과 phenylglycinol의 구조와 달리 prolinol의 구조가 내부의 고리

Table 2. Resolution of chiral samples on three chiral stationary phases (CSP 1~3)

	CSP1		CSP2		CSP3	
	\mathbf{k}_{1}	α	\mathbf{k}_{1}	α	\mathbf{k}_1	α
S 1	5.19	1.11	0.99	1.00	1.35	1.00
S2	3.95	1.09	0.66	1.00	1.08	1.00
S3 ^a	3.81	1.08	2.07	1.00	1.07	1.00
$S4^{a}$	4.95	1.00	2.91	1.08	2.56	1.08
S 5	2.03	1.15	0.91	1.13	0.82	1.16
S 6	3.28	1.19	2.78	1.23	3.27	1.26
S 7	2.08	1.12	1.40	1.00	1.54	1.00
S 8	6.79	1.06	2.65	1.27	2.57	1.47
S9	6.50	1.04	1.88	1.00	1.90	1.61
S10	8.51	1.00	5.38	1.00	5.57	1.14
S11	4.54	1.00	2.49	1.24	2.49	1.35
S12	9.03	1.00	5.39	1.04	4.69	1.11
S13	3.93	1.00	2.57	1.00	2.60	1.04
S14	7.20	1.00	3.64	1.07	7.84	1.00
S15	4.58	1.00	2.69	1.06	3.09	1.00

Detection at 210 and 254 nm. CSP 1, CSP 2 and CSP 3 analyses were performed on 10% IPA in hexane, flow 1.5 ml/min, ^a1.0 ml/min.

구조를 통하여 상대적으로 회전이 제한되어 키랄 중심부근 환경을 견고하게 하여 일부 시료들의 키랄분리에는 유리 하였던 것으로 추정된다. 그리고, prolinol 정지상의 경우 leucinol과 phenylglycinol과 달리 3차 아마이드 결합을 가져 서 아마이드 수소가 없는 관계로 시료와의 수소결합이 용 이하지 못한 점이 키랄 분리에 오히려 좋지 못한 결과를 초 래하였을 수도 있다. 그러나 3차 아마이드가 3,5-dinitro benzoyl 기를 포함하여 평면 구조를 이루며, 시료분자와의 π-π 상호작용을 용이하게 하여 CSP 1에서 시료들의 용량 인자 값을 전반적으로 증가시키는 데 일부 역할을 한 것 으로 보인다. 용량인자가 증가한 것은 *Table* 1에서 보았듯 이 CSP 1의 키랄 선택자가 실리카 겔에 공유결합된 양이 CSP 2와 3에 비해 많은 것도 그 이유일 것으로 생각된다.

결론적으로 본 연구에서는 지금까지 전혀 연구되지 않 았던 prolinol을 출발 물질로 사용하여 새로운 키랄 정지 상을 제조하였고, 이들을 키랄 분리에 적용하였다. 이들은 이미 보고된 이 계통의 키랄 정지상들 중에서 좋은 분리 결과를 보였던 leucinol과 phenylglycinol의 3,5-dinitro benzoyl 유도체 키랄 정지상(CSP 2와 CSP 3) 보다 크게 좋은 결과를 보이지는 않았으나, 해당 정지상들이 인지하지 못하는 특 정 키랄 화합물들을 분리할 수 있었기에 키랄 정지상으로 서 유용하게 이용될 수 있음을 확인하였고, prolinol을 포 함하여 다양한 키랄 시료들의 광학분할에 적용할 수 있는 효과적인 키랄 정지상으로서 이용될 수 있는 가능성은 충분히 확인할 수 있었다.

EXPERIMENTAL

시약

본 실험에서 사용한 amino alcohol 시료들과 3-(triethoxysilyl) propyl isocyanate, 3,5-dinitrobenzoyl chloride, chloroform-d는 Sigma-Aldrich Korea (Seoul, Korea)에서 구입하였으며, 5 µm spherical silica gel은 Fiji silysia chemical ltd. (Tokyo, Japan)에서 구입하여 사용하였다. Triethylamine, methylene chloride, benzene, toluene은 Junsei (Tokyo, Japan)에서 구 입하여 정제하지 않고 사용하였다.

기기

본실험에서 이용한 High Performance Liquid Chromatography (HPLC)는 Waters HPLC system을 사용하였으며, 2690 separation module과 WATERS 996 photodiode array detector로 구성되어 있다.

실험 방법

250 ml 둥근 플라스크에 amino alcohol 시료 1.0 g과 methlylene chloride 75 ml, triethylamine 1.1몰당량 넣고 amino alcohol이 다 녹을 때까지 교반시킨다. Amino alcohol 시료가 완전히 녹으면 얼음 중탕을 이용하여 플라스크를 충분히 식힌 후에 3,5-dinitrobenzoyl chloride 1.1몰당량을 methylene chloride에 녹여 dropping funnel을 이용하여 천천히 가한다음 얼음 중탕을 제거하고 상온에서 교반을 시킨다.

약 12시간이 지난 후, TLC로 반응이 종료된 것을 확인 한 후 1.2 M HCl 수용액, 1.0 M NaOH 수용액, 증류수 순 으로 추출하여 유기 층을 모아 무수 MgSO4로 건조시키고 여과 및 감압 농축한다. 이렇게 얻어진 반응 혼합물은 칼 럼 크로마토그래피로 전개용매로 ethyl acetate: hexane = 1:10 → 1:2을 사용, 분리하여 약간 노란색을 띤 백색 고체 시료를 얻었다. (수율 약70%) 이 단계 반응은 이미 유사 한 반응을 많이 진행하였으므로 얻어진 물질과 이전 유 사한 아미노알콜의 DNB 유도체의 구조를 NMR로 비교 하여 확인하였다. Acetone-d6 δ: 1.60 (m, 2H), 1.80 (m, 2H), 3.32 (t, 1H), 3.41 (m, 2H), 3.82 (d, 2H), 8.90 (s, 2H), 9.06 (s, 1H). amino alcohol DNB 유도체 1.0 g과 benzene 100 ml, triethylamine 0.1 몰당량, 3-(triethoxysilyl)propyl isocyanate 1.2몰당량을 넣고 72시간 동안 reflux 시킨다. TLC로 반응이 종료된 것을 확인한 후 바로 감압 농축하여 용매를 제거하고 관 크로 마토그래피로 신속히 분리하여 시료를 얻은 다음 NMR로 구조를 확인하였다. CDCl₃ δ: 0.64 (t, 2H), 1.22 (t, 9H), 1.65 (f, 2H), 1.88-1.93 (m, 2H), 1.98-2.18 (m, 2H), 3.22 (q, 2H), 3.41 (d, 1H), 3.57 (d, 1H), 3.82 (q, 6H), 4.22 (dd, 1H), 4.50-4.56 (m, 1H), 5.30 (t, 1H), 8.71 (d, 2H), 9.07 (t, 1H).

정지상 제조; 250 ml 이구 둥근 플라스크에 5 µm spherical silica gel 5 g과 toluene 120 ml를 넣고 Dean-Stark trap을 이 용하여 3시간 동안 물을 제거한 후 식힌다. 이후 물을 제 거한 실리카 겔이 들어 있는 플라스크에 앞서 얻은 amino alcohol DNB silyl 유도체를 가한 후 72시간 동안 교반시 킨다. 반응 종료 후 glass filter를 이용하여 거르고 methylene chloride, diethyl ether, ethyl acetate, methanol, ethyl acetate, diethyl ether 순으로 세척하여 얻은 실리카 겔을 진공 오 븐에서 80 도에서 2 시간 건조시켜 chiral stationary phase (CSP)를 얻었다.

CSP 1이외에도 CSP 2와 CSP 3을 기존의 알려진 방법 대로 제조하였고,^{12,13} 제조한 각 키랄 정지상의 공유결합 정도를 원소분석을 통해 확인하였다. 각 Bonded silica gel 3.5 g씩을 4.6*250 mm 크기의 속이 빈 HPLC용 stainless steel column에 슬러리 충진법으로 충진한 후,¹³ chiral HPLC 분리분석에 이용하였다.

Acknowledgments. 이 논문은 한국연구재단의 지원으로 연구가 수행되었음(2019R1A2C1003517).

REFERENCES

- Charl, R.; McDonagh, A. F. In *The Porphyrins*; Dolphin, D., Ed.; Academic Press: New York, U. S. A., 1979; Vol. 6, p 258.
- 2. Czad, D. D.; Armarego, W. L. F. *Purification of Laboratory Chemicals*; Pergamon Press: Oxford, U. K., 1988; p 19.
- 3. Ward, T. J.; Ward, K. D. Anal. Chem. 2010, 82, 4712.
- 4. Ward, T. J.; Ward, K. D. Anal. Chem. 2012, 84, 626.
- Hyun, M. H.; Kim, M. S.; Ryoo, J. J. Bull. Korean Chem. Soc. 1993, 14, 9.
- 6. Ikai, T.; Okamoto, Y. Chem. Rev. 2009, 109, 6077.
- Hyun, M. H.; Ryoo, J. J.; Lim, N. E. J. Liq. Chromatogr. 1993, 16, 3249.
- 8. Ahn, S. A.; Hyun, M. H. Chirality 2015, 27, 268.
- 9. Haginaka, J. J. Chromatogr. A 2001, 906, 253.
- 10. Yao, X.; Tan, T. T. Y.; Wang, Y. J. Chromatogr. A 2014, 1326, 80.
- Sun, P.; Wang, C.; Breitbach, Z. S.; Zhang, Y.; Armstrong, D. W. Anal. Chem. 2009, 81, 10215.
- Ryoo, J. J.; Im, S. H.; Lee, K. P.; Park, J. H.; Hyun, M. H. *Microchemical J.* **1999**, *63*, 128.
- Ryoo, J. J.; Kim, T. H.; Im, S. H.; Jeong, Y. H.; Park, J. Y.; Choi, S. H.; Lee, K. P.; Park, J. H. *J. Chromatogr. A* 2003, 987, 429.
- 14. Yu, J. J.; Lee, J. M.; Ryoo, J. J. Chirality 2016, 28, 276.
- 15. Yu, J. J, Ryoo, D. H.; Lee, J. M.; Ryoo, J. J. *Chirality* **2016**, *28*, 186.
- Yu, J. J.; Armstrong, D. W.; Ryoo, J. J. *Chirality* 2018, 30, 74.
- 17. Yu, J. J.; Ryoo, J. J. J. Korean Chem. Soc. 2018, 62, 64.
- 18. Yu, J. J.; Ryoo, J. J. Chirality 2022, 34, 587.