과제정보
This work was supported by grants from the National Research Foundation of Korea (NRF-2020R1A2C2010082 and NRF-2018R1A5A2024418) awarded to H.-H. Kim.
참고문헌
- Amarasekara, D.S., Yun, H., Kim, S., Lee, N., Kim, H., and Rho, J. (2018). Regulation of osteoclast differentiation by cytokine networks. Immune Netw. 18, e8. https://doi.org/10.4110/in.2018.18.e8
- Ashrafi, G. and Schwarz, T.L. (2013). The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 20, 31-42. https://doi.org/10.1038/cdd.2012.81
- Besse, A., Lamothe, B., Campos, A.D., Webster, W.K., Maddineni, U., Lin, S.C., Wu, H., and Darnay, B.G. (2007). TAK1-dependent signaling requires functional interaction with TAB2/TAB3. J. Biol. Chem. 282, 3918-3928. https://doi.org/10.1074/jbc.M608867200
- Bhatia, D., Chung, K.P., Nakahira, K., Patino, E., Rice, M.C., Torres, L.K., Muthukumar, T., Choi, A.M., Akchurin, O.M., and Choi, M.E. (2019). Mitophagy-dependent macrophage reprogramming protects against kidney fibrosis. JCI Insight 4, e132826. https://doi.org/10.1172/jci.insight.132826
- Boyle, W.J., Simonet, W.S., and Lacey, D.L. (2003). Osteoclast differentiation and activation. Nature 423, 337-342. https://doi.org/10.1038/nature01658
- Chen, J. and Chen, Z.J. (2013). Regulation of NF-kappaB by ubiquitination. Curr. Opin. Immunol. 25, 4-12. https://doi.org/10.1016/j.coi.2012.12.005
- Downey, P.A. and Siegel, M.I. (2006). Bone biology and the clinical implications for osteoporosis. Phys. Ther. 86, 77-91. https://doi.org/10.1093/ptj/86.1.77
- Franzoso, G., Carlson, L., Xing, L., Poljak, L., Shores, E.W., Brown, K.D., Leonardi, A., Tran, T., Boyce, B.F., and Siebenlist, U. (1997). Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev. 11, 3482-3496. https://doi.org/10.1101/gad.11.24.3482
- Gao, F., Chen, D., Si, J.M., Hu, Q.S., Qin, Z.H., Fang, M., and Wang, G.H. (2015). The mitochondrial protein BNIP3L is the substrate of PARK2 and mediates mitophagy in PINK1/PARK2 pathway. Hum. Mol. Genet. 24, 2528-2538. https://doi.org/10.1093/hmg/ddv017
- Geisler, S., Holmstrom, K.M., Skujat, D., Fiesel, F.C., Rothfuss, O.C., Kahle, P.J., and Springer, W. (2010). PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 12, 119-131. https://doi.org/10.1038/ncb2012
- Goodman, S.B., Gibon, E., Gallo, J., and Takagi, M. (2022). Macrophage polarization and the osteoimmunology of periprosthetic osteolysis. Curr. Osteoporos. Rep. 20, 43-52. https://doi.org/10.1007/s11914-022-00720-3
- Harper, J.W., Ordureau, A., and Heo, J.M. (2018). Building and decoding ubiquitin chains for mitophagy. Nat. Rev. Mol. Cell Biol. 19, 93-108. https://doi.org/10.1038/nrm.2017.129
- Henn, I.H., Bouman, L., Schlehe, J.S., Schlierf, A., Schramm, J.E., Wegener, E., Nakaso, K., Culmsee, C., Berninger, B., Krappmann, D., et al. (2007). Parkin mediates neuroprotection through activation of IkappaB kinase/nuclear factor-kappaB signaling. J. Neurosci. 27, 1868-1878. https://doi.org/10.1523/JNEUROSCI.5537-06.2007
- Horne, W.C., Sanjay, A., Bruzzaniti, A., and Baron, R. (2005). The role(s) of Src kinase and Cbl proteins in the regulation of osteoclast differentiation and function. Immunol. Rev. 208, 106-125. https://doi.org/10.1111/j.0105-2896.2005.00335.x
- Iotsova, V., Caamano, J., Loy, J., Yang, Y., Lewin, A., and Bravo, R. (1997). Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat. Med. 3, 1285-1289. https://doi.org/10.1038/nm1197-1285
- Jin, S.M. and Youle, R.J. (2012). PINK1- and Parkin-mediated mitophagy at a glance. J. Cell Sci. 125, 795-799. https://doi.org/10.1242/jcs.093849
- Kamienieva, I., Duszynski, J., and Szczepanowska, J. (2021). Multitasking guardian of mitochondrial quality: parkin function and Parkinson's disease. Transl. Neurodegener. 10, 5. https://doi.org/10.1186/s40035-020-00229-8
- Kim, J.H. and Kim, N. (2014). Regulation of NFATc1 in osteoclast differentiation. J. Bone Metab. 21, 233-241. https://doi.org/10.11005/jbm.2014.21.4.233
- Laforge, M., Rodrigues, V., Silvestre, R., Gautier, C., Weil, R., Corti, O., and Estaquier, J. (2016). NF-kappaB pathway controls mitochondrial dynamics. Cell Death Differ. 23, 89-98. https://doi.org/10.1038/cdd.2015.42
- Lamothe, B., Webster, W.K., Gopinathan, A., Besse, A., Campos, A.D., and Darnay, B.G. (2007). TRAF6 ubiquitin ligase is essential for RANKL signaling and osteoclast differentiation. Biochem. Biophys. Res. Commun. 359, 1044-1049. https://doi.org/10.1016/j.bbrc.2007.06.017
- Li, Z., Zhu, X., Xu, R., Wang, Y., Hu, R., and Xu, W. (2019). Deacylcynaropicrin inhibits RANKL-induced osteoclastogenesis by inhibiting NF-kappaB and MAPK and promoting M2 polarization of macrophages. Front. Pharmacol. 10, 599. https://doi.org/10.3389/fphar.2019.00599
- Lin, D.C., Xu, L., Chen, Y., Yan, H., Hazawa, M., Doan, N., Said, J.W., Ding, L.W., Liu, L.Z., Yang, H., et al. (2015). Genomic and functional analysis of the E3 ligase PARK2 in glioma. Cancer Res. 75, 1815-1827.
- Liu, J., Wang, S., Zhang, P., Said-Al-Naief, N., Michalek, S.M., and Feng, X. (2009). Molecular mechanism of the bifunctional role of lipopolysaccharide in osteoclastogenesis. J. Biol. Chem. 284, 12512-12523. https://doi.org/10.1074/jbc.M809789200
- Lubbe, S.J., Bustos, B.I., Hu, J., Krainc, D., Joseph, T., Hehir, J., Tan, M., Zhang, W., Escott-Price, V., Williams, N.M., et al. (2021). Assessing the relationship between monoallelic PRKN mutations and Parkinson's risk. Hum. Mol. Genet. 30, 78-86. https://doi.org/10.1093/hmg/ddaa273
- Luo, G., Li, F., Li, X., Wang, Z.G., and Zhang, B. (2018). TNFalpha and RANKL promote osteoclastogenesis by upregulating RANK via the NFkappaB pathway. Mol. Med. Rep. 17, 6605-6611.
- Madeo, F., Eisenberg, T., Pietrocola, F., and Kroemer, G. (2018). Spermidine in health and disease. Science 359, eaan2788. https://doi.org/10.1126/science.aan2788
- Martinez, F.O., Sica, A., Mantovani, A., and Locati, M. (2008). Macrophage activation and polarization. Front. Biosci. 13, 453-461. https://doi.org/10.2741/2692
- Muller-Rischart, A.K., Pilsl, A., Beaudette, P., Patra, M., Hadian, K., Funke, M., Peis, R., Deinlein, A., Schweimer, C., Kuhn, P.H., et al. (2013). The E3 ligase parkin maintains mitochondrial integrity by increasing linear ubiquitination of NEMO. Mol. Cell 49, 908-921. https://doi.org/10.1016/j.molcel.2013.01.036
- Nakamura, I. and Jimi, E. (2006). Regulation of osteoclast differentiation and function by interleukin-1. Vitam. Horm. 74, 357-370. Park, J.H., Lee, N.K., and Lee, S.Y. (2017). Current understanding of RANK signaling in osteoclast differentiation and maturation. Mol. Cells 40, 706-713.
- Poole, A.C., Thomas, R.E., Yu, S., Vincow, E.S., and Pallanck, L. (2010). The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway. Plos One 5, e10054. https://doi.org/10.1371/journal.pone.0010054
- Quinn, P.M.J., Moreira, P.I., Ambrosio, A.F., and Alves, C.H. (2020). PINK1/ PARKIN signalling in neurodegeneration and neuroinflammation. Acta Neuropathol. Commun. 8, 189. https://doi.org/10.1186/s40478-020-01062-w
- Sanjay, A., Houghton, A., Neff, L., DiDomenico, E., Bardelay, C., Antoine, E., Levy, J., Gailit, J., Bowtell, D., Horne, W.C., et al. (2001). Cbl associates with Pyk2 and Src to regulate Src kinase activity, alpha(v)beta(3) integrinmediated signaling, cell adhesion, and osteoclast motility. J. Cell Biol. 152, 181-195. https://doi.org/10.1083/jcb.152.1.181
- Seirafi, M., Kozlov, G., and Gehring, K. (2015). Parkin structure and function. FEBS J. 282, 2076-2088. https://doi.org/10.1111/febs.13249
- Takahashi, N., Ejiri, S., Yanagisawa, S., and Ozawa, H. (2007). Regulation of osteoclast polarization. Odontology 95, 1-9. https://doi.org/10.1007/s10266-007-0071-y
- Tanaka, S., Amling, M., Neff, L., Peyman, A., Uhlmann, E., Levy, J.B., and Baron, R. (1996). c-Cbl is downstream of c-Src in a signalling pathway necessary for bone resorption. Nature 383, 528-531. https://doi.org/10.1038/383528a0
- Wada, T., Nakashima, T., Hiroshi, N., and Penninger, J.M. (2006). RANKLRANK signaling in osteoclastogenesis and bone disease. Trends Mol. Med. 12, 17-25.
- Walsh, M.C., Kim, G.K., Maurizio, P.L., Molnar, E.E., and Choi, Y. (2008). TRAF6 autoubiquitination-independent activation of the NFkappaB and MAPK pathways in response to IL-1 and RANKL. Plos One 3, e4064. https://doi.org/10.1371/journal.pone.0004064
- Wang, Y., Shan, B., Liang, Y., Wei, H., and Yuan, J. (2018). Parkin regulates NF-kappaB by mediating site-specific ubiquitination of RIPK1. Cell Death Dis. 9, 732. https://doi.org/10.1038/s41419-018-0770-z
- Yamamoto, T., Hinoi, E., Fujita, H., Iezaki, T., Takahata, Y., Takamori, M., and Yoneda, Y. (2012). The natural polyamines spermidine and spermine prevent bone loss through preferential disruption of osteoclastic activation in ovariectomized mice. Br. J. Pharmacol. 166, 1084-1096 https://doi.org/10.1111/j.1476-5381.2012.01856.x
- Yasuda, H., Shima, N., Nakagawa, N., Yamaguchi, K., Kinosaki, M., Mochizuki, S., Tomoyasu, A., Yano, K., Goto, M., Murakami, A., et al. (1998). Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. U. S. A. 95, 3597-3602. https://doi.org/10.1073/pnas.95.7.3597
- Zhao, Z., Hou, X., Yin, X., Li, Y., Duan, R., Boyce, B.F., and Yao, Z. (2015). TNF induction of NF-kappaB RelB enhances RANKL-induced osteoclastogenesis by promoting inflammatory macrophage differentiation but also limits it through suppression of NFATc1 expression. Plos One 10, e0135728. https://doi.org/10.1371/journal.pone.0135728
- Zhou, X., Li, Y., Wang, W., Wang, S., Hou, J., Zhang, A., Lv, B., Gao, C., Yan, Z., Pang, D., et al. (2020). Regulation of Hippo/YAP signaling and Esophageal Squamous Carcinoma progression by an E3 ubiquitin ligase PARK2. Theranostics 10, 9443-9457. https://doi.org/10.7150/thno.46078
- Zhu, L., Zhao, Q., Yang, T., Ding, W., and Zhao, Y. (2015). Cellular metabolism and macrophage functional polarization. Int. Rev. Immunol. 34, 82-100. https://doi.org/10.3109/08830185.2014.969421
- Ziviani, E., Tao, R.N., and Whitworth, A.J. (2010). Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc. Natl. Acad. Sci. U. S. A. 107, 5018-5023. https://doi.org/10.1073/pnas.0913485107
- Zou, W. and Bar-Shavit, Z. (2002). Dual modulation of osteoclast differentiation by lipopolysaccharide. J. Bone Miner. Res. 17, 1211-1218. https://doi.org/10.1359/jbmr.2002.17.7.1211