DOI QR코드

DOI QR Code

Raman Characteristics of (100) β-Gallium Oxide Single Crystal Grown by EFG Method

EFG법을 이용한 (100) β-산화갈륨 단결정 성장 및 라만 특성 연구

  • Shin, Yun-Ji (Semiconductor Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Cho, Seong-Ho (Semiconductor Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Jeong, Woon-Hyeon (Semiconductor Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Jeong, Seong-Min (Semiconductor Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Won-Jae (Department of Advanced Materials Engineering, Dong-Eui University) ;
  • Bae, Si-Young (Semiconductor Materials Center, Korea Institute of Ceramic Engineering and Technology)
  • 신윤지 (한국세라믹기술원 반도체소재센터) ;
  • 조성호 (한국세라믹기술원 반도체소재센터) ;
  • 정운현 (한국세라믹기술원 반도체소재센터) ;
  • 정성민 (한국세라믹기술원 반도체소재센터) ;
  • 이원재 (동의대학교 신소재공학과) ;
  • 배시영 (한국세라믹기술원 반도체소재센터)
  • Received : 2022.09.08
  • Accepted : 2022.10.05
  • Published : 2022.11.01

Abstract

A 100 mm × 50 mm-sized (100) gallium oxide (Ga2O3) single crystal ingot was successfully grown by edge-defined film-fed growth (EFG). The preferred orientation and the quality of grown Ga2O3 ingot were compatible with a commercial Ga2O3 substrate by showing strong (100) orientation behaviors and 246 arcsec in X-ray rocking curve. Raman characterization was also performed for both samples; thereby providing various Raman-active characteristics of Ga2O3 crystals. In particular, we observed Ag(5) and Ag(10) peaks of Raman active mode, directly related to the impurity of the grown Ga2O3 crystal. Hence, the comparison of the crystal quality and Raman analysis might be useful for further enhancement of Ga2O3 single crystal quality in the future.

Keywords

Acknowledgement

This research was supported by the National Research Foundation of Korea (NRF), which is funded by the Ministry of Education (NRF-2021M3H4A3A01061782), and the Ceramic Strategic Research Program (KPP22013) through the Korea Institute of Ceramic Engineering and Technology (KICET) and Ministry of Trade, Industry and Energy (MOTIE), Republic of Korea.

References

  1. S. J. Pearton, J. Yang, P. H. Cary, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, Appl. Phys. Rev., 5, 011301 (2018). [DOI: https://doi.org/10.1063/1.5006941]
  2. M. H. Wong, K. Goto, H. Murakami, Y. Kumagai, and M. Higashiwaki, IEEE Electron Device Lett., 40, 431 (2019). [DOI: https://doi.org/10.1109/LED.2018.2884542]
  3. M. Higashiwaki, K. Sasaki, T. Kamimura, M. H. Wong, D. Krishnamurthy, A. Kuramata, T. Masui, and S. Yamakoshi, Appl. Phys. Lett., 103, 123511 (2013). [DOI: https://doi.org/10.1063/1.4821858]
  4. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, Appl. Phys. Lett., 100, 013504 (2012). [DOI: https://doi.org/10.1063/1.3674287]
  5. A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, and S. Yamakoshi, Jpn. J. Appl. Phys., 55, 1202A2 (2016). [DOI: http://doi.org/10.7567/JJAP.55.1202A2].
  6. K. Hoshikawa, T. Kobayashi, Y. Matsuki, E. Ohba, and T. Kobayashi, J. Cryst. Growth, 545, 125724 (2020). [DOI: https://doi.org/10.1016/j.jcrysgro.2020.125724]
  7. K. Hoshikawa, E. Ohba, T. Kobayashi, J. Yanagisawa, C. Miyagawa, and Y. Nakamura, J. Cryst. Growth, 447, 36 (2016). [DOI: https://doi.org/10.1016/j.jcrysgro.2016.04.022]
  8. H. Cui, H. F. Mohamed, C. Xia, Q. Sai, W. Zhou, H. Qi, J. Zhao, J. Si, and X. Ji, J. Alloys Compd., 788, 925 (2019). [DOI: https://doi.org/10.1016/j.jallcom.2019.02.076]
  9. N. Suzuki, S. Ohira, M. Tanaka, T. Sugawara, K. Nakajima, and T. Shishido, Phys. Status Solidi C, 4, 2310 (2007). [DOI: https://doi.org/10.1002/pssc.200674884]
  10. Z. Galazka, Semicond. Sci. Technol., 33, 113001 (2018). [DOI: https://doi.org/10.1088/1361-6641/aadf78]
  11. A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, and S. Yamakoshi, Oxide-Based Mater. Devices IX (SPIE, San Francisco, California, 2018) pp. 9-14. [DOI: https://doi.org/10.1117/12.2301405]
  12. Z. Galazka, S. Ganschow, K. Irmscher, D. Klimm, M. Albrecht, R. Schewski, M. Pietsch, T. Schulz, A. Dittmar, A. Kwasniewski, R. Grueneberg, S. B. Anooz, A. Popp, U. Juda, I. M. Hanke, T. Schroeder, and M. Bickermann, Prog. Cryst. Growth Charact. Mater., 67, 100511 (2021). [DOI: https://doi.org/10.1016/j.pcrysgrow.2020.100511]
  13. H. F. Mohamed, C. Xia, Q. Sai, H. Cui, M. Pan, and H. Qi, J. Semicond., 40, 011801 (2019). [DOI: https://doi.org/10.1088/1674-4926/40/1/011801]
  14. E. Ahmadi and Y. Oshima, J. Appl. Phys., 126, 160901 (2019). [DOI: https://doi.org/10.1063/1.5123213]
  15. A. Kyrtsos, M. Matsubara, and E. Bellotti, Phys. Rev. B, 95, 245202 (2017). [DOI: https://doi.org/10.1103/PhysRevB.95.245202]
  16. M. Schubert, R. Korlacki, S. Knight, T. Hofmann, S. Schoche, V. Darakchieva, E. Janzen, B. Monemar, D. Gogova, Q.-T. Thieu, R. Togashi, H. Murakami, Y. Kumagai, K. Goto, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, Phys. Rev. B, 93, 125209 (2016). [DOI: https://doi.org/10.1103/PhysRevB.93.125209]
  17. K. Zhang, Z. Xu, S. Zhang, H. Wang, H. Cheng, J. Hao, J. Wu, and F. Fang, Physica B: Physics of Condensed Matter, 600, 412624 (2020). [DOI: https://doi.org/10.1016/j.physb.2020.412624]
  18. M. Saleh, A. Bhattacharyya, J. B. Varley, S. Swain, J. Jesenovec, S. Krishnamoorthy, and K. Lynn, Appl. Phys. Express, 12, 085502 (2019). [DOI: https://doi.org/10.7567/ 1882-0786/ab2b6c]
  19. Y. Usui, T. Oya, G. Okada, N. Kawaguchi, T. Yanagida, Mater. Res. Bull., 90, 266 (2017). [DOI: https://doi.org/10.1016/j.materresbull.2017.02.016]
  20. S. Zhang, X. Lian, Y. Ma, W. Liu, Y. Zhang, Y. Xu, and H. Cheng, J. Semicond., 39, 083003 (2018). [DOI: https://doi.org/10.1088/1674-4926/39/8/083003]