DOI QR코드

DOI QR Code

Design and Fabrication of Rogowski-type Partial Discharge Sensor for Insulation Diagnosis of Cast-Resin Transformers

몰드 변압기의 절연 진단을 위한 로고우스키형 부분방전 센서의 설계 및 제작

  • Lee, Gyeong-Yeol (New Nuclear Business Department, Korea Hydro & Nuclear Power Co. Ltd.) ;
  • Kim, Sung-Wook (Division of Smart Electrical & Electronic Engineering, Silla University) ;
  • Kil, Gyung-Suk (Department of Electrical and Electronics Engineering, Korea Maritime and Ocean University)
  • 이경렬 (한국수력원자력(주) 원전수출처) ;
  • 김성욱 (신라대학교 스마트전기공학과) ;
  • 길경석 (한국해양대학교 전기전자공학과)
  • Received : 2022.08.25
  • Accepted : 2022.09.01
  • Published : 2022.11.01

Abstract

Cast-resin transformers are widely installed in various electrical power systems because of their low operating cost and low influence on external environmental factors. However, when they have an internal defect during the manufacturing process or operation, a partial discharge (PD) occurs, and eventually destroys the insulation. In this paper, a Rogowski-type PD sensor was studied to replace commercial PD sensors used for the insulation diagnosis of power apparatus. The proposed PD sensor was manufactured with four different types of PCB-based winding structures, and it was analyzed in terms of the detection characteristics for standard calibration pulses and the changes of the output voltage according to the distance. The output increased linearly in accordance with the applied discharge amount. It was confirmed that the hexagon structure sensor had the highest sensitivity, because the winding cross-sectional area of the sensor was larger than others. In addition, as the distance from the defect increased, the output voltage of the sensors decreased by 7.32% on average. It was also confirmed that the attenuation rate according to the distance decreased as the input discharge amount increased. For the application of this new type sensor, PD electrode system was designed to simulate the void defect. Waveforms and PRPD patterns measured by the proposed PD sensors at DIV and 120% of DIV were the same as the results measured by MPD 600 based on IEC 60270. The proposed PD sensors can be installed on the inner wall of the transformer tank by coating its surfaces with a non-conductive material; therefore, it is possible to detect internal defects more effectively at a closer distance from the defect than the conventional sensors.

Keywords

Acknowledgement

본 논문은 2022년 대한민국 교육부와 한국연구재단의 지원을 받아 수행된 연구임(NRF-2022R1G1A1011043).

References

  1. S. J. Park, S. C. Hwang, G. Wang, and G. S. Kil, J. Korean Soc. Railw., 20, 203 (2017). [DOI: https://doi.org/10.7782/JKSR.2017.20.2.203]
  2. G. Wang, S. C. Hwang, W. H. Kim, and G. S. Kil, 2017 Spring Conference of the Korea Society for Railway, (Hoengseong, Korea, 2017) pp. 421-422.
  3. L. E. Lundgarrd, IEEE Electr. Insul. M., 8, 34 (1992). [DOI: https://doi.org/10.1109/57.156943]
  4. Y. Lu, X. Tan, and X. Hu, IEEE Pro. Sic. Meas. Technol., 147, 81 (2000). [DOI: https://doi.org/10.1049/ip-smt:20000223]
  5. G. Wang, H. E. Jo, S. J. Kim, S. W. Kim, and G. S. Kil, Measurement, 91, 351 (2016). [DOI: https://doi.org/10.1016/j.measurement.2016.05.033]
  6. G. Wang, S. J. Kim, G. S. Kil, and S. W. Kim, IEEE Trans. Dielectr. Electr. Insul., 24, 200 (2017). [DOI: https://doi.org/10.1109/TDEI.2016.005969]
  7. P. D. Agoris, S. Meijer, J. J. Smit, International Symposium on High-Voltage Engineering(ISH), (Beijing, China, 1 2004).
  8. G. S. Kil, D. W. Park, I. K. Kim, S. Y. Choi, and C. Y. Park, J. Korean. Inst. Electr. Electron. Mater. Eng., 20, 907 (2007). [DOI: https://doi.org/10.4313/JKEM.2007.20.10.907]
  9. S. Tenbohlen, H. Boris, P. Werle, U. Sundermann, and H. Matthes, CIGRE (Paris, France, 12 2000).
  10. J. Y. Song, H. D. Seo, D. W. Park, G. S. Kil, M. S. Han, and D. W. Jang, 2005 Spring Conference of the Korea Society for Railway, 190 (2005). pp. 867-872.
  11. F. H. Kreuger, Butterworth-Heinemann (1989).
  12. M. Mondal and G. B. Kumbhar, IETE Tech. Rev., 34, 504 (2014). [DOI: https://doi.org/10.1080/02564602.2016.1209436]
  13. M. Mondal and G. B. Kumbhar, IEEE T. Dielect. El. In., 23, 2908 (2016). [DOI: https://doi.org/10.1109/TDEI.2016.7736852]
  14. S. Sharifinia, M. Allahbakhshi, T. Ghanbari, A. Akbari, and H. R. Mirzaei, IEEE Sens. J., 21, 10743 (2021). [DOI: https://doi.org/10.1109/JSEN.2021.3062770]
  15. F. Alvarez, F. Garnacho, J. Ortego, and M. A. Sanchez-Uran, Sensors, 15, 7360 (2015). [DOI: https://doi.org/10.3390/s150407360]
  16. H. Mirzaei, A. Akbari, E. Gockenbach, and K. Miralikhani, IEEE T. Dielect. El. In., 22, 448 (2015). [DOI: https://doi.org/10.1109/TDEI.2014.004249]
  17. S. J. Kim, G. Wang, S. J. Park, G. S. Kil, and C. H. An, J. Korean. Inst. Electr. Electron. Mater. Eng., 29, 429 (2016). [DOI: https://doi.org/10.4313/JKEM.2016.29.7.429]
  18. C. Y. Park, S. W. Kim, J. S. Choi, D. W. Park, and G. S. Kil, KIIEIE Spring Annual Conference & General Meeting 2008, (Hoengseong, Korea, 301 2008) pp. 301-306.
  19. E. T. Ryu, K. R. Hwang, J. R. Jung, and H. J. Yang, KIEE Summer Conference, 42nd edn. (Pyeongchang, Korea, 2011) pp. 1556.
  20. M. H. Samimi, A. Mahari, M. A. Farahnakian, and H. Mohseni, IEEE Sens. J., 15, 651 (2015). [DOI: https://doi.org/10.1109/JSEN.2014.2362940]
  21. M. Shafiq, K. Kauhaniemi, G. Robles, M. Isa, and L. Kumpulainen, Electr. Power Syst. Res., 167, 150 (2019). [DOI: https://doi.org/10.1016/j.epsr.2018.10.038]
  22. U. J. Kim, M. S. Song, and R. Y. Kim, Energies, 13, 5161 (2020). [DOI: https://doi.org/10.3390/en13195161]
  23. F. Naseri, E. Farjah, and T. Ghanbari, IEEE Sensors J., 19, 6675 (2019). [DOI: https://doi.org/10.1109/JSEN.2019.2912947]
  24. T. Tao, Z. Zhao, W. Ma, Q. Pan, and A. Hu, IEEE T. Electromagn C., 58, 344 (2016). [DOI: https://doi.org/10.1109/TEMC.2013.2252906]
  25. D. H. Ahn, D. E. Kim, N. H. Kim, S. H. Lim, and G. S. Kil, J. Korean Soc. Railw., 25, 255 (2022). [DOI: https://doi.org/10.7782/JKSR.2022.25.4.255]