DOI QR코드

DOI QR Code

달성광산 산성광산배수 침전물의 시간에 따른 광물상 특성 변화 및 이에 따른 미량원소의 거동 변화

Changes of Mineralogical Characteristics of Precipitates in Acid Mine Drainage of the Dalsung Mine and Related Changes of Trace Elements

  • 윤영진 (경북대학교 지구시스템과학부) ;
  • 김영규 (경북대학교 지구시스템과학부) ;
  • 이성주 (경북대학교 지구시스템과학부)
  • Yoon, Young Jin (School of Earth System Sciences, Kyungpook National University) ;
  • Kim, Yeongkyoo (School of Earth System Sciences, Kyungpook National University) ;
  • Lee, Seong-joo (School of Earth System Sciences, Kyungpook National University)
  • 투고 : 2022.10.03
  • 심사 : 2022.10.18
  • 발행 : 2022.10.28

초록

산성광산배수 내에서 침전하는 다양한 철광물들은 침전 과정뿐만 아니라 침전 후 다른 광물로 상전이를 거치면서 배수의 미량 원소의 농도 변화 및 이동성에 큰 영향을 미친다. 본 연구는 슈베르트마나이트가 주로 침전되는 것으로 알려진 달성광산의 산성광산배수 침전조에서 채취한 고체 침전물에 대하여 pH 및 시간에 따른 광물 특성 변화와 이와 연관된 배수내의 원소 농도 변화를 알아보았다. 그러나 채취된 시료의 주 구성 광물은 침철석으로 구성되어 있었으며 이는 이미 슈베르트마나이트가 어느 정도 침철석으로 상전이가 되어 있는 상태임을 지시한다. 실험 결과 배수의 pH가 높을수록 피크의 반치폭이 좁아지는 것이 관찰되었다. 이는 비정질에 가까운 슈베르트마나이트의 침철석으로의 전환 또는 침철석의 결정도 증가로 해석할 수 있으며 pH가 높을수록 이러한 변화가 큼을 보여준다. Fe의 농도도 pH에 큰 영향을 받으며 pH가 증가할수록 배수 내의 Fe의 농도는 감소하였다. 시간이 증가할수록 Fe의 농도는 증가하다가 추후 감소하였는데 이는 일부 슈베르트마나이트가 용해된 후 다시 침철석으로 침전하여 생긴 결과로 해석된다. 이런 결과로 황(S)의 경우 초기에 빠르게 증가하다 시간이 지나면서 더 이상 증가하지 않는 양상을 보여준다. S의 농도는 또한 슈베르트마나이트의 안정성과 관련이 있기 때문에 슈베르트마나이트가 안정한 낮은 pH에서는 낮은 농도를 그리고 침철석이 안정한 높은 pH에서는 높은 농도를 보여준다. 배수 내의 미량 원소들도 pH와 밀접한 연관성을 보여주며 일반적으로 pH가 낮을수록 높은 농도를 보이는데 배수 내 양이온으로 존재하는 미량원소의 경우 낮은 pH에서의 높은 용해도와 높은 pH에서의 침전과 표면 전하의 변화 등에 의한 것으로 해석된다. 이와 달리 비소(As)의 경우 배수 내 음이온으로 존재함으로 낮은 pH에서 높은 농도를 보여주지만 모든 pH 범위에서 시간이 지나면서 농도가 증가함을 보이는데 이는 광물 표면의 전하보다 슈베르트마나이트 등으로 As와 공침할 수 있는 Fe의 배수 내 농도와 관련이 있어보이며 시간에 따른 As의 증가도 슈베르트마나이트의 감소와 연관성이 있을 것으로 판단된다.

Various iron minerals that precipitate in acid mine drainage have a great influence on the concentration change and mobility of trace elements in the drainage during phase transition to other minerals as well as the precipitation process. This study investigated the change of mineral properties and the behaviors of trace elements influenced by pH and time for the precipitates collected from the acid mine drainage treatment system of the Dalsung mine, where schwertmannite is mainly precipitated. However, the main mineral precipitated in the drainage was goethite, suggesting schwetmannite has already undergone a phase transition to goethite to some extent, and it was observed that at higher pH, the peak width at half maximum of XRD peak was narrower. This can be interpreted as the transformation of small amount of amorphous schwetmannite to goethite or an increase in the crystallinity of goethite, and it showed that the higher the pH, the greater this change was. The concentration of Fe was also greatly affected by the pH values, and as the pH increased, the concentration of Fe in the drainage decreased. With increasing time, the Fe concentration increased and then decreased, which can be interpreted to indicate the dissolution of schwertmannite and precipitation of goethite. This mineral change probably resulted in the rapid increase of the concentration of S at initial stage, but its concentration was stabilized later. The concentration of S is also related to the stability of schwetmannite, showing a high concentration at a low pH at which schwertmannite is stable and a low concentration at a high pH at which goethite is stable. The trace elements present as cations in the drainage also showed a close relationship with the pH, generally the lower the pH, the higher the concentration, due to the solubility changes by the pH, and the precipitation and the changes in mineral surface charge at high pH. On the other hand, in the case of As, existing as an anion, although it showed a high concentration at low pH, its concentration increased with time at all pH values, which is probably related to the concentration of Fe which can be coprecipitated in the drainage, and the increase of As concentration with time is also considered to be related to the decrease in schwertmannite rather than the mineral surface charge.

키워드

과제정보

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2022R1A2C1003884).

참고문헌

  1. Acero, P., Ayora C., Torrento, C. and Nieto, J.M. (2006) The behavior of trace metals during schwertmannite precipitation and subsequent transformation into goethite and jarosite. Geochim. Cosmochim. Acta, v.70, p.4130-4139. doi: 10.1016/j.gca.2006.06.1367 Asta, M.P., Ayora, C., Roman-Ross, G., Cama, J., Acero, P., Gault,
  2. A.G., Charnock, J.M. and Bardelli, F. (2010) Natural attenuation of arsenic in the Tinto Santa Rosa acid stream (Iberian Pyritic Belt, SW Spain): The role of iron precipitates. Chem. Geol., v.271, p.1-12. doi: 10.1016/j.chemgeo.2009.12.005
  3. Baleeiro, A. Fiol, S., Otero-Farina, A. and Antelo, J. (2018) Surface chemistry of iron oxides formed by neutralization of acidic mine waters: Removal of trace metals. Appl. Geochem., v.89, p.129-137. doi: 10.1016/j.apgeochem.2017.12.003
  4. Bigham, J.M., Carlson. L. and Murad. E. (1994) Schwertmannite, a new iron oxyhydroxysulfate from Pyhasalmi Finland and other localities. Mineral. Mag., v.58, p.641-648. https://doi.org/10.1180/minmag.1994.058.393.14
  5. Bigham, J.M., Schwertmann, U., Traina, S.J., Winland, R.L. and Wolf, M. (1996) Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochim. Cosmochim. Acta, v.60, p.2111-2121. doi: 10.1016/0016-7037(96)00091-9
  6. Burton, E.D., Bush, R.T., Sullicvan, L.A. and Mitchell, D.R.G. (2008) Schwertmannite transformation to geothite vis the Fe(II) pathway: Reaction rates and implications for iron-sulfide formation. Geochim. Cosmochim. Acta, v.72, p.4551-4564. doi: 10.1016/j.gca.2008.06.019
  7. Burton, E.D., Johnston, S.G., Watling, K., Bush, R.T., Keene, A.F. and Sullivan, L.A. (2010) Arsenic effects and behavior in association with the Fe(II)-catalyzed transformation of schwertmannite. Environ. Sci. Technol., v.44, p.2016-2021. doi: 10.1021/es903424h
  8. Casiot, C., Lebrun, S., Morin, G., Bruneel, O., Personne, J.C. and Elbaz-Poulichet, F. (2005) Sorption and redox processes controlling arsenic fate and transport in a stream impacted by acid mine drainage. Sci. Total Environ., v.347, p.122-130. doi: 10.1016/j.scitotenv.2004.12.039
  9. Crosa, M., Boero, V. and Franchini-Angela, M. (1999) Determination of mean crystallite dimensions from X-ray diffraction peak profiles; a comparative analysis of synthetic hematities. Clays Clay Min., v.47, p.742-747. https://doi.org/10.1346/CCMN.1999.0470608
  10. Fukushi, K., Sato, T., Yanase., N. (2003) Solid-solution reaction in As(V) sorption by schwertmannite. Environ. Sci. Technol., v.37, p.3581-3586. doi: 10.1021/es026427i
  11. Gerth, J. (1990) Unit-cell dimensions of pure and trace metalassociated goethites. Geochim. Cosmochim. Acta, v.54, p.363-371. doi: 10.1016/0016-7037(90)90325-F
  12. Hajji, S., Montes-Hernandez, G., Sarret, G., Tordo, A., Morin, G., Ona-Nguema, G., Bureau, S., Turki, T. and Mzoughi, N. (2019) Arsenite and chromate sequestration onto ferrihydrite, siderite and goethite nanostructured minerals: Isotherms from flowthrough reactor experiments and XAS measurements. J. Hazard. Mater., v.362, p.358-367. doi: 10.1016/j.jhazmat.2018.09.031
  13. Jiang, W., Lv, J., Luo, L., Yang, K., Lin, Y., Hu, F., Zhang, J. and Zhang, S. (2013) Arsenate and cadmium co-adsorption and coprecipitation on goethite. J. Hazard. Mater., v.262, p.55-63. doi: 10.1016/j.jhazmat.2013.08.030
  14. Jonsson, J., Persson, P., Sjoberg, S. and Lovgren, L. (2005) Schwertmannite precipitated from acid mine drainage: phase transformation, sulphate release and surface properties. Appl. Geochem., v.20, p.179-191. doi: 10.1016/j.apgeochem.2004.04.008
  15. Kawano M. and Tomita K. (2001) Geochemical modeling of bacterially induced mineralization of schwertmannite and jarosite in sulfuric acid spring water. Am. Mineral., v.86, p.1156-1165. doi: 10.2138/am-2001-1005
  16. Kim, H.-J. and Kim, Y. (2011) Transformation of schwertmannite to goethite and related behavior of heavy metals. J. Min. Soc. Kor., v.24, p.63-71. doi: 10.9727/jmsk.2011.24.2.063
  17. Kim, H.-J. Kim, Y. and Choo, C.O. (2014) The effect of mineralogy on the mobility of heavy metals in mine tailings: a case study in the Samsanjeil mine, Korea. Environ. Ear. Sci., v.71, p.3429-3441. doi: 10.1007/s12665-013-2732-1
  18. Kim, H.-J., Kim, Y. (2021) Schwertmannite transformation to goethite and the related mobility of trace metals in acid mine drainage. Chemosphere, v.269, p.128720. doi: 10.1016/j.chemosphere.2020.128720
  19. Kim, Y. (2018) Effects of different oxyanions in solution on the precipitation of jarosite at room temperature. J. Hazard. Mater., v.353, p.118-126. doi: 10.1016/j.jhazmat.2018.04.016
  20. Knorr, K.-H. and Blodau, C. (2007) Controls on schwertmannite transformation rates and products. Appl. Geochem., v.22, p.2006-2015. doi: 10.1016/j.apgeochem.2007.04.017
  21. Komarek, M., Antelo, J., Kralova, M., Veselska, V., Cihalova, S., Chrastny, V., Ettler, V., Filip, J., Yu, Q., Fein, J.B. and Koretsky, C.M. (2018) Revisiting models of Cd, Cu, Pb, and Zn adsorption onto Fe(III) oxides. Chem. Geol., v.493, p.189-198. doi: 10.1016/j.chemgeo.2018.05.036
  22. Komarek, M., Koretsky, C.M., Stephen, K.J., Alessi, D.S. and Chrastny, V. (2015) Competitive adsorption of Cd(II), Cr(VI), and Pb(II) onto nanomaghemite: a spectroscopic and modeling approach. Environ. Sci. Technol., v.49, p.12851-12859. doi: 10.1021/acs.est.5b03063
  23. Konhauser, K.O. (1998) Diversity of bacterial iron mineralization. Earth-Sci. Rev., v.43, p.91-121. doi: 10.1016/S0012-8252(97)00036-6
  24. Lee, J.E. and Kim, Y. (2008) A quantitative estimation of factors affecting pH changes using simple geochemical data from acid mine drainage. Environ. Geol., v.55, p.65-75. doi: 10.1007/s00254-007-0965-6
  25. Moon, J.W., Roh, Y., Lauf, R.J., Vali, H., Yeary, L.W. and Phelps, T.J. (2007) Microbial preparation of metal-substituted magnetite nanoparticles. J. Microbiol. Methods, v.70, p.150-158. doi: 10.1016/j.mimet.2007.04.012
  26. Munk, L., Faure, G. and Koski, R., (2006) Geochemical evolution of solutions derived from experimental weathering of sulfidebearing rocks. Appl. Geochem., v.21, p.1123-1134. doi: 10.1016/j.apgeochem.2006.04.003
  27. Paikaray, S., Gottlicher, J. and Peiffer, S. (2011) Removal of As(III) from acidic waters using schwertmannite: Surface speciation and effect of synthesis pathway. Chem. Geol., v.283, p.134-142. doi: 10.1016/j.chemgeo.2010.08.011
  28. Park, S. and Kim, Y. (2016) Mineralogical changes and distribution of heavy metals caused by the weathering of hydrothermally altered, pyrite-rich andesite. Environ. Earth Sci., v.75, p.1125. doi: 10.1007/s12665-016-5915-8
  29. Podda, D.P., Wells, J.D. and Johnson, B.B. (1996) Anomalous adsorption of copper (II) on goethite. J. Colloid Interf. Sci., v.184, p.564-569. doi: 10.1006/jcis.1996.0652
  30. Regenspurg, S., Brand, A. and Peiffer, S. (2004) Formation and stability of schwertmannite in acidic mining lakes. Geochim. Cosmochim. Acta, v.68, p.1185-1197. doi: 10.1016/j.gca.2003.07.015
  31. Ryu, J.-G. and Kim, Y. (2022) Mineral transformation and dissolution of jarosite coprecipitated with hazardous oxyanions and their mobility changes. J. Hazar. Mater., v.427, p.128283. doi: 10.1016/j.jhazmat.2022.128283
  32. Sanchez-Rodas, D., Gomez-Ariza, J.L., Giraldez, I., Velasco, A. and Morales, E. (2005) Arsenic speciation in river and estuarine waters from southwest Spain. Sci. Total Environ., v.345, p.207-217. doi: 10.1016/j.scitotenv.2004.10.029
  33. Schroth, A.W. and Parnell, R.A. (2005) Trace metal retention through the schwertmannite to goethite transformation as observed in a field setting, Alta Mine, MT. Appl. Geochem., p.20, v.907-917. doi: 10.1016/j.apgeochem.2004.09.020
  34. Schwertmann, U., Cambier, P., and Murad, E. (1985) Properties of goethites of varying crystallinity. Clays Clay Min., v.33, p.369-378. doi: 10.1346/CCMN.1985.0330501
  35. Schwertmann U. and Bigham J.M. and Murad E. (1995) The first occurrence of schwertmannite in a natural stream environment. European J. Miner., v.7, p.547-552. doi: 10.1127/ejm/7/3/0547
  36. Shin, J.-H., Park, J.-Y., Kim, J.-W., Ju, J.-Y., Hwang, S.-H., Kim, Y., Park, C., Baek, Y. (2022) Mineral precipitation and the behavioral changes of trace elements in Munkyeong coal mine drainage. Korean J. Mineral. Petrol., v.35, p.355-365.
  37. Stiers, W. and Schwertmann, U. (1985) Evidence for manganese substitution in synthetic goethite. Geochim. Cosmochim. Acta, v.49, p.1909-1911. doi: 10.1016/0016-7037(85)90085-7
  38. Swedlund, P., Webster, J.G. and Miskelly, G.M. (2009) Goethite adsorption of Cu(II), Pb(II), and Zn(II) in the presence of sulfate: Properties of the ternary complex. Geochim. Cosmochim. Acta, v.73, p.1548-1562. doi: 10.1016/j.gca.2008.12.007
  39. Yoon, Y.J., Lee, J.E., Bang, S.J., Baek, Y.D. and Kim, Y. (2018) Behaviors of trace elements caused by the precipitation of minerals in acid mine drainage. J. Miner. Soc. Korea, v.31, p.173-182. doi: 10.9727/jmsk.2018.31.3.173
  40. Zhang, Z., Bi, X., Li, X., Zhao, Q. and Chen, H. (2018) Schwertmannite: occurrence, properties, synthesis and application in environmental remediation. RSC Advances, v.8, p.33583-33599. doi: 10.1039/C8RA06025H
  41. Zhao, H., Xia, b., Qin, J. and Zhang, J. (2012) Hydrogeochemical and mineralogical characteristics related to heavy metal attenuation in a stream polluted by acid mine drainage: A case study in Dabaoshan Mine, China. J. Environ. Sci., v.24, p.979-989. doi: 10.1016/S1001-0742(11)60868-1